Аппаратное подключение внешних устройств к компьютеру осуществляется через

Обновлено: 21.11.2024

Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:

Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.

MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.

PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.

Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

Коммутаторы. Коммутатор — это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.

Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер.В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.

Топология сети

Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:

При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.

В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует множество точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все упомянутые выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

    — это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые службы в IBM Cloud предоставляют вам сетевые решения для увеличения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.

Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.

Периферийное устройство — это «устройство, которое используется для ввода информации в компьютер или получения информации из него». [1]

Существует три различных типа периферийных устройств:

  • Ввод, используемый для взаимодействия или отправки данных на компьютер (мышь, клавиатура и т. д.)
  • Вывод, обеспечивающий вывод пользователю данных с компьютера (мониторы, принтеры и т. д.)
  • Хранилище, в котором хранятся данные, обрабатываемые компьютером (жесткие диски, флешки и т. д.)

Периферийные устройства человеко-машинного интерфейса (HMI).

Обзор

Периферийное устройство обычно определяется как любое вспомогательное устройство, такое как компьютерная мышь или клавиатура, которое каким-либо образом подключается к компьютеру и работает с ним. Другими примерами периферийных устройств являются карты расширения, графические карты, сканеры изображений, ленточные накопители, микрофоны, громкоговорители, веб-камеры и цифровые камеры. ОЗУ — оперативная память — занимает грань между периферийным и основным компонентом; технически это периферийное устройство для хранения данных, но оно требуется для каждой основной функции современного компьютера, и удаление ОЗУ эффективно отключит любую современную машину. Многие новые устройства, такие как цифровые часы, смартфоны и планшетные компьютеры, имеют интерфейсы, которые позволяют использовать их в качестве периферийных устройств на полном компьютере, хотя они не зависят от хоста, как другие периферийные устройства. Согласно наиболее техническому определению, единственными частями компьютера, которые не считаются периферийными устройствами, являются центральный процессор, блок питания, материнская плата и корпус компьютера.

В системе на чипе периферийные устройства встроены в ту же интегральную схему, что и центральный процессор. Их по-прежнему называют «периферийными устройствами», несмотря на то, что они постоянно подключены к своему хост-процессору (и в некотором смысле являются его частью).

Общие периферийные устройства

  • Ввод
    • Клавиатура
    • Компьютерная мышь
    • Графический планшет
    • Сенсорный экран
    • Сканер штрих-кода
    • Сканер изображений
    • Микрофон
    • Веб-камера
    • Игровой контроллер
    • Световое перо
    • Сканер
    • Цифровая камера
    • Дисплей компьютера
    • Принтер
    • Проектор
    • Динамик
    • Диск для гибких дисков
    • Флэш-накопитель
    • Диск
    • Интерфейс для хранения данных на смартфоне или планшете.
    • CD/DVD-привод
    • Модем
    • Контроллер сетевого интерфейса (NIC)

    Устройства ввода

    В вычислительной технике устройство ввода – это периферийное устройство (часть аппаратного компьютерного оборудования), используемое для передачи данных и управляющих сигналов в систему обработки информации, такую ​​как компьютер или другое информационное устройство. К устройствам ввода относятся клавиатуры, мыши, сканеры, цифровые камеры и джойстики.

    Многие устройства ввода можно классифицировать по следующим признакам:

    • модальность ввода (например, механическое движение, звук, изображение и т. д.)
    • ввод является дискретным (например, нажатия клавиш) или непрерывным (например, положение мыши, хотя и оцифровано в дискретную величину, происходит достаточно быстро, чтобы считаться непрерывным)

    Указывающие устройства, которые представляют собой устройства ввода, используемые для указания положения в пространстве, можно дополнительно классифицировать в соответствии с:

    • Прямой или косвенный вход. При прямом вводе пространство ввода совпадает с пространством отображения, т. е. указание производится в пространстве, где появляется визуальная обратная связь или указатель. Сенсорные экраны и световые перья предполагают прямой ввод. Примеры непрямого ввода включают мышь и шаровой манипулятор.
    • Является ли информация о местоположении абсолютной (например, на сенсорном экране) или относительной (например, с помощью мыши, которую можно поднять и изменить положение)

    Прямой ввод почти всегда является абсолютным, но косвенный ввод может быть как абсолютным, так и относительным. Например, оцифровывающие графические планшеты, которые не имеют встроенного экрана, включают непрямой ввод и определяют абсолютные положения и часто работают в режиме абсолютного ввода, но они также могут быть настроены для имитации режима относительного ввода, такого как сенсорная панель, где стилус или шайбу можно поднять и переместить.

    Устройства ввода и вывода составляют аппаратный интерфейс между компьютером и сканером или контроллером 6DOF.

    Клавиатуры

    Клавиатура – это устройство взаимодействия с пользователем, представленное в виде набора кнопок. Каждая кнопка или клавиша может использоваться либо для ввода лингвистического символа в компьютер, либо для вызова определенной функции компьютера. Они действуют как основной интерфейс ввода текста для большинства пользователей. В традиционных клавиатурах используются пружинные кнопки, хотя в более новых вариантах используются виртуальные клавиши или даже проекционные клавиатуры. Это похожее на пишущую машинку устройство, состоящее из матрицы переключателей.

    Примеры типов клавиатур включают:

    • Кейер
    • Клавиатура
    • Подсвеченная программная функциональная клавиатура (LPFK)

    Указывающие устройства

    Компьютерная мышь

    Указывающие устройства – наиболее часто используемые сегодня устройства ввода. Указывающее устройство — это любое устройство интерфейса пользователя, которое позволяет пользователю вводить пространственные данные в компьютер. В случае с мышами и сенсорными панелями это обычно достигается путем обнаружения движения по физической поверхности. Аналоговые устройства, такие как 3D-мыши, джойстики или джойстики, работают, сообщая об угле отклонения. Движения указывающего устройства отражаются на экране движениями указателя, создавая простой и интуитивно понятный способ навигации по графическому пользовательскому интерфейсу компьютера (GUI).

    Композитные устройства

    Пульт Wii с прикрепленным ремешком

    Устройства ввода, такие как кнопки и джойстики, можно объединить на одном физическом устройстве, которое можно рассматривать как составное устройство. Многие игровые устройства имеют такие контроллеры. Технически мыши являются составными устройствами, так как они отслеживают движение и предоставляют кнопки для нажатия, но обычно считается, что составные устройства имеют более двух различных форм ввода.

    • Игровой контроллер
    • Геймпад (или джойстик)
    • Пэддл (игровой контроллер)
    • Поворотный переключатель/манипулятор (или ручка)
    • Пульт Wii

    Устройства обработки изображений и ввода

    Датчик Microsoft Kinect

    Устройства ввода видео используются для оцифровки изображений или видео из внешнего мира в компьютер. Информация может храниться в различных форматах в зависимости от требований пользователя.

    • Цифровая камера
    • Цифровая видеокамера
    • Портативный медиаплеер
    • Веб-камера
    • Сенсор Microsoft Kinect
    • Сканер изображений
    • Сканер отпечатков пальцев
    • Сканер штрих-кода
    • 3D-сканер
    • Лазерный дальномер
    • Отслеживание взгляда
    • Компьютерная томография
    • Магнитно-резонансная томография
    • Позитронно-эмиссионная томография
    • Медицинское УЗИ

    Устройства ввода звука

    Устройства ввода звука используются для захвата звука. В некоторых случаях устройство вывода звука можно использовать в качестве устройства ввода для захвата производимого звука.

    • Микрофоны
    • MIDI-клавиатура или другой цифровой музыкальный инструмент

    Устройства вывода

    Устройство вывода – это любая часть аппаратного компьютерного оборудования, используемая для передачи результатов обработки данных, выполняемой системой обработки информации (например, компьютером), которая преобразует сгенерированную электронным способом информацию в удобочитаемую форму. [3] [4]

    Устройства отображения

    Устройство отображения – это устройство вывода, которое визуально передает текст, графику и видеоинформацию. Информация, отображаемая на устройстве отображения, называется электронной копией, поскольку эта информация существует в электронном виде и отображается в течение временного периода. Устройства отображения включают ЭЛТ-мониторы, ЖК-мониторы и дисплеи, газовые плазменные мониторы и телевизоры. [5]

    Ввод/вывод

    Входные данные – это сигналы или данные, полученные системой, а выходные – сигналы или данные, отправленные из нее.

    Существует множество устройств ввода и вывода, таких как многофункциональные принтеры и компьютерные навигационные системы, которые используются для специализированных или уникальных приложений. [6] В вычислительной технике ввод/вывод относится к связи между системой обработки информации (например, компьютером) и внешним миром. Входы — это сигналы или данные, полученные системой, а выходы — это сигналы или данные, отправленные из нее.

    Примеры

    Эти примеры устройств вывода также включают устройства ввода/вывода. [7] [8] Принтеры и визуальные дисплеи являются наиболее распространенным типом устройств вывода для взаимодействия с людьми, но голосовая связь становится все более доступной. [9]

    • Динамики
    • Наушники
    • Экран (монитор)
    • Принтер
    • Помощь в голосовом общении
    • Автомобильная навигационная система
    • Тиснение Брайля
    • Проектор
    • Плоттер
    • Телевидение
    • Радио

    Память компьютера

    В вычислительной технике под памятью понимаются устройства, используемые для хранения информации для использования в компьютере. Термин «первичная память» используется для систем хранения данных, которые функционируют на высокой скорости (т. е. ОЗУ), в отличие от вторичной памяти, которая обеспечивает хранение программ и данных, доступ к которым медленный, но обеспечивает большую емкость памяти. При необходимости первичная память может быть сохранена во вторичной памяти с помощью метода управления памятью, называемого «виртуальной памятью». Архаичным синонимом памяти является хранилище. [10]

    Энергозависимая память

    DDR-SD-RAM, SD-RAM и две старые формы RAM.

    Энергозависимая память – это компьютерная память, для хранения которой требуется питание. Большая часть современной полупроводниковой энергозависимой памяти представляет собой статическое ОЗУ (см. SRAM) или динамическое ОЗУ (см. DRAM). SRAM сохраняет свое содержимое до тех пор, пока подключено питание, и к ней легко подключиться, но она использует шесть транзисторов на бит. Динамическое ОЗУ сложнее в интерфейсе и управлении и требует регулярных циклов обновления, чтобы предотвратить потерю его содержимого. Однако DRAM использует только один транзистор и конденсатор на бит, что позволяет достичь гораздо более высокой плотности и, с большим количеством битов на микросхеме памяти, быть намного дешевле в расчете на бит. SRAM не подходит для системной памяти настольных компьютеров, где преобладает DRAM, но используется для их кэш-памяти. SRAM является обычным явлением в небольших встроенных системах, которым может потребоваться всего несколько десятков килобайт или меньше.Будущие технологии энергозависимой памяти, которые надеются заменить или конкурировать с SRAM и DRAM, включают Z-RAM, TTRAM, A-RAM и ETA RAM.

    Практически любой компьютер, который вы покупаете сегодня, оснащен одним или несколькими разъемами универсальной последовательной шины. Эти разъемы USB позволяют быстро и легко подключать к компьютеру мыши, принтеры и другие аксессуары. Операционная система также поддерживает USB, поэтому установка драйверов устройств также выполняется быстро и легко. По сравнению с другими способами подключения устройств к вашему компьютеру (включая параллельные порты, последовательные порты и специальные карты, которые вы устанавливаете внутри корпуса компьютера), USB-устройства невероятно просты.

    В этой статье мы рассмотрим USB-порты как с точки зрения пользователя, так и с технической точки зрения. Вы узнаете, почему система USB такая гибкая и как она может так легко поддерживать такое количество устройств — это действительно потрясающая система.

    Любой, кто когда-либо имел дело с компьютерами, знает проблему, которую пытается решить универсальная последовательная шина: в прошлом подключение устройств к компьютерам было настоящей головной болью.

    • Принтеры подключались к параллельным портам принтеров, а большинство компьютеров поставлялись только с одним портом. Такие вещи, как внешние носители данных, которым требуется высокоскоростное подключение к компьютеру, также будут использовать параллельный порт, часто с ограниченным успехом и низкой скоростью.
    • Последовательный порт использовался в модемах, а также в некоторых принтерах и различных необычных устройствах, таких как карманные компьютеры (КПК) и цифровые камеры. У большинства компьютеров было не более двух последовательных портов, и в большинстве случаев они были очень медленными.
    • Устройства, которым требовалось более быстрое подключение, поставлялись с собственными картами, которые должны были вставляться в слот для карт внутри корпуса компьютера. К сожалению, количество слотов для карт ограничено, а некоторые карты сложно установить.

    Цель USB – положить конец всем этим головным болям. Универсальная последовательная шина — это единый, стандартизированный и простой в использовании способ подключения до 127 устройств к компьютеру.

    Практически каждое периферийное устройство, производимое в настоящее время, выпускается в версии USB. Примерный список USB-устройств, которые вы можете купить сегодня, включает:

    • Принтеры
    • Сканеры
    • Мыши
    • Джойстики
    • Хомуты
    • Цифровые камеры
    • Веб-камеры
    • Устройства для сбора научных данных
    • Модемы
    • Динамики
    • Телефоны
    • Видеотелефоны
    • Устройства хранения
    • Сетевые подключения

    В следующем разделе мы рассмотрим USB-кабели и разъемы, которые позволяют вашему компьютеру обмениваться данными с этими устройствами.

    USB-кабели и разъемы

    Подключить USB-устройство к компьютеру очень просто: нужно найти USB-разъем на задней панели устройства и вставить его в него.

    Если это новое устройство, операционная система автоматически обнаружит его и запросит диск с драйверами. Если устройство уже установлено, компьютер активирует его и начинает с ним общаться. USB-устройства можно подключать и отключать в любое время.

    Многие USB-устройства поставляются со встроенным кабелем, и на кабеле есть разъем "A". Если нет, то на устройстве есть разъем, который принимает разъем USB "B".

    В стандарте USB используются разъемы "A" и "B", чтобы избежать путаницы:

    • Разъемы "A" направляются "вверх по течению" к компьютеру.
    • Разъемы "B" направляются "вниз по течению" и подключаются к отдельным устройствам.

    Используя разные разъемы на восходящем и нисходящем концах, невозможно запутаться — если вы подключите разъем «B» любого USB-кабеля к устройству, вы знаете, что он будет работать. Точно так же вы можете подключить любой разъем "A" к любому разъему "A" и быть уверенным, что он будет работать.

    Большинство компьютеров, которые вы покупаете сегодня, оснащены как минимум одним или двумя разъемами USB. Но с таким количеством USB-устройств на рынке у вас очень быстро заканчиваются розетки. Например, у вас может быть клавиатура, мышь, принтер, микрофон и веб-камера, работающие по технологии USB, поэтому возникает очевидный вопрос: "Как подключить все устройства?"

    Простое решение проблемы – купить недорогой USB-концентратор. Стандарт USB поддерживает до 127 устройств, и USB-концентраторы являются частью стандарта.

    Концентратор обычно имеет четыре новых порта, но их может быть и больше. Вы подключаете концентратор к компьютеру, а затем подключаете свои устройства (или другие концентраторы) к концентратору. Объединив концентраторы в цепочку, вы можете создать десятки доступных USB-портов на одном компьютере.

    Концентраторы могут быть с питанием или без него. Как вы увидите на следующей странице, стандарт USB позволяет устройствам получать питание от USB-подключения. Высокомощные устройства, такие как принтер или сканер, будут иметь собственный источник питания, но устройства с низким энергопотреблением, такие как мыши и цифровые камеры, получают питание от шины, чтобы упростить их. Мощность (до 500 миллиампер при 5 вольтах для USB 2.0 и 900 миллиампер для USB 3.0) поступает с компьютера. Если у вас много устройств с автономным питанием (таких как принтеры и сканеры), то ваш концентратор не нуждается в питании — ни одно из устройств, подключенных к концентратору, не нуждается в дополнительном питании, поэтому компьютер может справиться с этим. Если у вас много устройств без питания, таких как мыши и камеры, вам, вероятно, понадобится концентратор с питанием. Хаб имеет собственный трансформатор и подает питание на шину, чтобы устройства не перегружали питание компьютера.

    Процесс USB

    При включении хост опрашивает все устройства, подключенные к шине, и назначает каждому из них адрес. Этот процесс называется нумерацией — устройства также нумеруются при подключении к шине. Хост также узнает от каждого устройства, какой тип передачи данных он хочет выполнить:

    • Прерывание. Устройство, такое как мышь или клавиатура, которое будет отправлять очень мало данных, выберет режим прерывания.
    • Bulk. Устройство, подобное принтеру, которое получает данные одним большим пакетом, использует режим массовой передачи. Блок данных отправляется на принтер (порциями по 64 байта) и проверяется на предмет правильности.
    • Изохронный. Потоковое устройство (например, динамики) использует изохронный режим. Потоки данных между устройством и хостом передаются в режиме реального времени без исправления ошибок.

    Хост также может отправлять команды или запрашивать параметры с управляющими пакетами.

    По мере перечисления устройств хост отслеживает общую пропускную способность, запрашиваемую всеми изохронными и прерывающими устройствами. Они могут потреблять до 90 процентов доступной пропускной способности 480 Мбит/с (USB 3.0 увеличивает эту скорость до 4,8 гигабит в секунду). После того, как 90 процентов израсходовано, хост запрещает доступ к любым другим изохронным или прерывающим устройствам. Пакеты управления и пакеты для массовой передачи используют любую оставшуюся полосу пропускания (не менее 10 процентов).

    Универсальная последовательная шина делит доступную полосу пропускания на кадры, и хост управляет кадрами. Фреймы содержат 1500 байт, и каждую миллисекунду начинается новый кадр. Во время кадра изохронные устройства и устройства прерывания получают слот, поэтому им гарантирована необходимая полоса пропускания. Массовая передача и передача управления используют все оставшееся пространство. Технические ссылки в конце статьи содержат много подробностей, если вы хотите узнать больше.

    Внутри USB-кабеля есть два провода питания: +5 В (красный) и заземление (коричневый), а также витая пара (желтый и синий) проводов для передачи данных. Кабель также экранирован.

    Универсальная последовательная шина имеет следующие функции:

    • Компьютер действует как хост.
    • К хосту можно подключить до 127 устройств либо напрямую, либо через концентраторы USB.
    • Отдельные USB-кабели могут иметь длину до 5 м; с концентраторами устройства могут находиться на расстоянии до 30 метров (6 кабелей) от хоста.
    • С USB 2.0 максимальная скорость передачи данных по шине составляет 480 мегабит в секунду (в 10 раз больше, чем у USB 1.0).
    • Кабель USB 2.0 состоит из двух проводов для питания (+5 В и заземления) и витой пары для передачи данных. Стандарт USB 3.0 добавляет еще четыре провода для передачи данных. В то время как USB 2.0 может одновременно отправлять данные только в одном направлении (нисходящем или восходящем), USB 3.0 может передавать данные одновременно в обоих направлениях.
    • По проводам питания компьютер может подавать до 500 мА при напряжении 5 вольт. Кабель USB 3.0 обеспечивает ток до 900 мА.
    • Устройства с низким энергопотреблением (например, мыши) могут получать питание непосредственно от шины. Устройства большой мощности (например, принтеры) имеют собственные источники питания и потребляют от шины минимальное количество энергии. Концентраторы могут иметь собственные источники питания для питания устройств, подключенных к концентратору.
    • USB-устройства поддерживают горячую замену, то есть вы можете подключать их к шине и отключать в любое время. Кабель USB 3.0 совместим с портами USB 2.0 — вы не получите такой же скорости передачи данных, как при использовании порта USB 3.0, но данные и питание будут по-прежнему передаваться по кабелю.
    • Многие USB-устройства могут быть переведены в спящий режим хост-компьютером, когда компьютер переходит в режим энергосбережения.

    Устройства, подключенные к USB-порту, используют кабель для передачи питания и данных.

    Стандарт для USB версии 2.0 был выпущен в апреле 2000 г. и служит обновлением для USB 1.1.

    USB 2.0 (высокоскоростной USB) обеспечивает дополнительную пропускную способность для мультимедийных приложений и приложений для хранения данных, а скорость передачи данных в 40 раз выше, чем у USB 1.1. Чтобы обеспечить плавный переход как для потребителей, так и для производителей, USB 2.0 имеет полную прямую и обратную совместимость с оригинальными USB-устройствами, а также работает с кабелями и разъемами, предназначенными для оригинального USB.

    Поддержка трех скоростных режимов (1,5, 12 и 480 мегабит в секунду), USB 2.0 поддерживает устройства с низкой пропускной способностью, такие как клавиатуры и мыши, а также устройства с высокой пропускной способностью, такие как веб-камеры с высоким разрешением, сканеры, принтеры и системы хранения данных большой емкости. Внедрение USB 2.0 позволило лидерам индустрии ПК продвинуться вперед в разработке периферийных устройств для ПК, дополняющих существующие высокопроизводительные ПК. Помимо улучшения функциональности и стимулирования инноваций, USB 2.0 повышает производительность пользовательских приложений и позволяет пользователю одновременно запускать несколько приложений для ПК или несколько высокопроизводительных периферийных устройств.

    Стандарт USB 3.0 (SuperSpeed ​​USB) стал официальным 17 ноября 2008 г. [источник: Everything USB]. USB 3.0 может похвастаться скоростью в 10 раз выше, чем USB 2.0, со скоростью 4,8 гигабит в секунду. Он предназначен для таких приложений, как передача видеоматериалов высокой четкости или резервное копирование всего жесткого диска на внешний диск. По мере увеличения емкости жесткого диска возрастает потребность в высокоскоростном методе передачи данных.

    Принятие стандарта USB 3.0 идет медленно. Производители чипов должны разработать оборудование для материнских плат, поддерживающее USB 3.0. Владельцы компьютеров могут приобрести карты, которые они могут установить на свои компьютеры, чтобы обеспечить поддержку USB 3.0. Но аппаратная поддержка — это только часть проблемы — вам также нужна поддержка со стороны вашей операционной системы. Несмотря на то, что Microsoft объявила, что Windows 7 в конечном итоге будет поддерживать стандарт USB 3.0, компания поставила свою операционную систему без поддержки USB 3.0. Последние дистрибутивы операционной системы Linux поддерживают USB 3.0.

    Возможно, вы не думаете, что кабели передачи данных вызывают споры. Но некоторые репортеры, такие как автор ZDNet Адриан Кингсли-Хьюз, предполагают, что одной из причин медленного внедрения USB 3.0 является то, что Intel намеренно отложила производство материнских плат с поддержкой USB 3.0, чтобы дать одному из своих продуктов преимущество [источник: Kingsley - Хьюз]. Этим продуктом является Light Peak, технология передачи данных, которая имеет начальную максимальную скорость передачи данных 10 гигабит в секунду, а в будущем теоретическая скорость достигнет 100 гигабит в секунду. Поскольку Intel является крупным производителем микросхем, только несколько компьютеров с материнскими платами других компаний в настоящее время поддерживают USB 3.0.

    Представители Intel отрицают такие утверждения. Руководители компании заявили, что технология Light Peak не заменит порты USB и что Light Peak и USB 3.0 будут работать вместе. В то же время сегодня на рынке можно найти компьютеры и аксессуары с интерфейсом USB 3.0.

    Для получения дополнительной информации о USB и смежных темах перейдите по ссылкам на следующей странице.

    Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

    Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

    программное обеспечение, инструкции, которые сообщают компьютеру, что делать. Программное обеспечение включает в себя весь набор программ, процедур и подпрограмм, связанных с работой компьютерной системы. Этот термин был придуман, чтобы отличить эти инструкции от оборудования, то есть физических компонентов компьютерной системы. Набор инструкций, предписывающих аппаратному обеспечению компьютера выполнять задачу, называется программой или программным обеспечением.

    Двумя основными типами программного обеспечения являются системное программное обеспечение и прикладное программное обеспечение. Системное программное обеспечение управляет внутренним функционированием компьютера, главным образом через операционную систему, а также контролирует такие периферийные устройства, как мониторы, принтеры и устройства хранения данных. Прикладное программное обеспечение, напротив, предписывает компьютеру выполнять команды, заданные пользователем, и можно сказать, что оно включает в себя любую программу, которая обрабатывает данные для пользователя. Таким образом, прикладное программное обеспечение включает в себя текстовые процессоры, электронные таблицы, управление базами данных, программы инвентаризации и расчета заработной платы и многие другие «приложения». Третья категория программного обеспечения — это сетевое программное обеспечение, которое координирует обмен данными между компьютерами, связанными в сети.

    Компьютеры размещают веб-сайты, состоящие из HTML, и отправляют текстовые сообщения так же просто, как. РЖУ НЕ МОГУ. Взломайте этот тест, и пусть какая-нибудь технология подсчитает ваш результат и раскроет вам его содержание.

    Программное обеспечение обычно хранится на внешнем устройстве долговременной памяти, таком как жесткий диск или магнитная дискета. Когда программа используется, компьютер считывает ее с запоминающего устройства и временно помещает инструкции в оперативную память (ОЗУ). Процесс сохранения и последующего выполнения инструкций называется «запуском» или «исполнением» программы.Напротив, программы и процедуры, которые постоянно хранятся в памяти компьютера с использованием технологии только для чтения (ПЗУ), называются прошивкой или «аппаратным программным обеспечением».

    Редакторы Британской энциклопедии Эта статья была недавно отредактирована и обновлена Адамом Августином.

    Читайте также: