По типу источника питания память цифрового устройства можно разделить на

Обновлено: 04.07.2024

Это место охватывает:

Устройства или устройства для хранения цифровой или аналоговой информации, в которых не происходит относительного перемещения между элементом хранения информации и преобразователем; которые включают в себя устройство выбора для записи или считывания информации в хранилище или из магазина.

Это место не распространяется на:

Полупроводниковые устройства для хранения данных

Примеры мест, где освещается предмет этого места, когда оно специально адаптировано, используется для определенной цели или включено в более крупную систему:

Твердотельные накопители

Носители записи для машин

Обратите внимание на следующие места, которые могут представлять интерес для поиска:

Доступ или выделение памяти в электронных компьютерах

Хранение информации на основе относительного перемещения между носителем записи и датчиком

Импульсная техника в целом, т.е. электронные переключатели

Использование статического хранилища в качестве носителя для записи изображений

В этом подклассе существует три основные основные группы: G11C 5/00, G11C 7/00 и G11C 8/00, которые охватывают такие аспекты, как электропитание, схемы чтения и записи и схемы адресации, которые являются общими для многих если не все виды воспоминаний. Существуют и другие основные группы, посвященные одному или нескольким конкретным типам технологий ячеек памяти. Внутри них могут быть специальные подгруппы для таких аспектов, как электропитание или адресация, которые параллельны общим группам. По соглашению, если в документе описывается конкретный аспект конкретной сотовой технологии без указания ее использования с другими типами сот, он должен быть отнесен только к технологической группе. Если он описан как применимый к двум типам клеток, то он должен быть отнесен к каждому типу клеток и к общей группе. Таким образом, например, усилитель считывания для резистивной ОЗУ будет классифицироваться как G11C 13/004, а документ, применяющий один и тот же усилитель считывания как к ReRAM, так и к флэш-памяти, будет дополнительно классифицирован в G11C 16/26 и G11C 7/06.

G11C 29/00 — еще одна общая группа, охватывающая аспекты тестирования и ремонта запоминающих устройств. Для этих аспектов нет подгрупп, специфичных для типа клеток, и поэтому они классифицируются только в этом месте. Однако другие аспекты, также охваченные документами по тестированию, будут классифицироваться в соответствии с правилами предыдущего абзаца.

Здесь следующие термины или выражения используются в указанном значении:

элемент, который может содержать хотя бы один элемент информации и снабжен средствами для записи или считывания этой информации

устройство, включая элементы хранения, которые могут хранить информацию, которую можно извлечь при необходимости.

Периферийное устройство — это «устройство, которое используется для ввода информации в компьютер или получения информации из него». [1]

Существует три различных типа периферийных устройств:

  • Ввод, используемый для взаимодействия или отправки данных на компьютер (мышь, клавиатура и т. д.)
  • Вывод, обеспечивающий вывод пользователю данных с компьютера (мониторы, принтеры и т. д.)
  • Хранилище, в котором хранятся данные, обрабатываемые компьютером (жесткие диски, флешки и т. д.)

Как человеческое познание и чувства взаимодействуют с аппаратным и программным обеспечением. Наши глаза, уши и руки получают информацию от мониторов, телевизоров, динамиков, наушников и геймпадов. . Наши руки и голоса обеспечивают ввод с помощью клавиатуры, мыши, геймпада, джойстика и микрофона. Программное обеспечение обеспечивает ввод и вывод для оборудования». ширина=

Периферийные устройства человеко-машинного интерфейса (HMI).

Обзор

Периферийное устройство обычно определяется как любое вспомогательное устройство, такое как компьютерная мышь или клавиатура, которое каким-либо образом подключается к компьютеру и работает с ним. Другими примерами периферийных устройств являются карты расширения, графические карты, сканеры изображений, ленточные накопители, микрофоны, громкоговорители, веб-камеры и цифровые камеры. ОЗУ — оперативная память — занимает грань между периферийным и основным компонентом; технически это периферийное устройство для хранения данных, но оно требуется для каждой основной функции современного компьютера, и удаление ОЗУ эффективно отключит любую современную машину. Многие новые устройства, такие как цифровые часы, смартфоны и планшетные компьютеры, имеют интерфейсы, которые позволяют использовать их в качестве периферийных устройств на полном компьютере, хотя они не зависят от хоста, как другие периферийные устройства. Согласно наиболее техническому определению, единственными частями компьютера, которые не считаются периферийными устройствами, являются центральный процессор, блок питания, материнская плата и корпус компьютера.

В системе на чипе периферийные устройства встроены в ту же интегральную схему, что и центральный процессор. Их по-прежнему называют «периферийными устройствами», несмотря на то, что они постоянно подключены к своему хост-процессору (и в некотором смысле являются его частью).

Общие периферийные устройства

  • Ввод
    • Клавиатура
    • Компьютерная мышь
    • Графический планшет
    • Сенсорный экран
    • Сканер штрих-кода
    • Сканер изображений
    • Микрофон
    • Веб-камера
    • Игровой контроллер
    • Световое перо
    • Сканер
    • Цифровая камера
    • Дисплей компьютера
    • Принтер
    • Проектор
    • Динамик
    • Диск для гибких дисков
    • Флэш-накопитель
    • Диск
    • Интерфейс для хранения данных на смартфоне или планшете.
    • CD/DVD-привод
    • Модем
    • Контроллер сетевого интерфейса (NIC)

    Устройства ввода

    В вычислительной технике устройство ввода – это периферийное устройство (часть аппаратного компьютерного оборудования), используемое для передачи данных и управляющих сигналов в систему обработки информации, такую ​​как компьютер или другое информационное устройство. К устройствам ввода относятся клавиатуры, мыши, сканеры, цифровые камеры и джойстики.

    Многие устройства ввода можно классифицировать по следующим признакам:

    • модальность ввода (например, механическое движение, звук, изображение и т. д.)
    • ввод является дискретным (например, нажатия клавиш) или непрерывным (например, положение мыши, хотя и оцифровано в дискретную величину, происходит достаточно быстро, чтобы считаться непрерывным)

    Указывающие устройства, которые представляют собой устройства ввода, используемые для указания положения в пространстве, можно дополнительно классифицировать в соответствии с:

    • Прямой или косвенный вход. При прямом вводе пространство ввода совпадает с пространством отображения, т. е. указание производится в пространстве, где появляется визуальная обратная связь или указатель. Сенсорные экраны и световые перья предполагают прямой ввод. Примеры непрямого ввода включают мышь и шаровой манипулятор.
    • Является ли информация о местоположении абсолютной (например, на сенсорном экране) или относительной (например, с помощью мыши, которую можно поднять и изменить положение)

    Прямой ввод почти всегда является абсолютным, но косвенный ввод может быть как абсолютным, так и относительным. Например, оцифровывающие графические планшеты, которые не имеют встроенного экрана, включают непрямой ввод и определяют абсолютные положения и часто работают в режиме абсолютного ввода, но они также могут быть настроены для имитации режима относительного ввода, такого как сенсорная панель, где стилус или шайбу можно поднять и переместить.

    Устройства ввода и вывода составляют аппаратный интерфейс между компьютером и сканером или контроллером 6DOF.

    Клавиатуры

    Клавиатура – это устройство взаимодействия с пользователем, представленное в виде набора кнопок. Каждая кнопка или клавиша может использоваться либо для ввода лингвистического символа в компьютер, либо для вызова определенной функции компьютера. Они действуют как основной интерфейс ввода текста для большинства пользователей. В традиционных клавиатурах используются пружинные кнопки, хотя в более новых вариантах используются виртуальные клавиши или даже проекционные клавиатуры. Это похожее на пишущую машинку устройство, состоящее из матрицы переключателей.

    Примеры типов клавиатур включают:

    • Кейер
    • Клавиатура
    • Подсвеченная программная функциональная клавиатура (LPFK)

    Указывающие устройства

    Мышь сидит на столе.

    Компьютерная мышь

    Указывающие устройства – наиболее часто используемые сегодня устройства ввода. Указывающее устройство — это любое устройство интерфейса пользователя, которое позволяет пользователю вводить пространственные данные в компьютер. В случае с мышами и сенсорными панелями это обычно достигается путем обнаружения движения по физической поверхности. Аналоговые устройства, такие как 3D-мыши, джойстики или джойстики, работают, сообщая об угле отклонения. Движения указывающего устройства повторяются на экране движениями указателя, создавая простой и интуитивно понятный способ навигации по графическому пользовательскому интерфейсу компьютера (GUI).

    Композитные устройства

    Wii Remote

    Пульт Wii с прикрепленным ремешком

    Устройства ввода, такие как кнопки и джойстики, можно объединить на одном физическом устройстве, которое можно рассматривать как составное устройство. Многие игровые устройства имеют такие контроллеры. Технически мыши являются составными устройствами, так как они отслеживают движение и предоставляют кнопки для нажатия, но обычно считается, что составные устройства имеют более двух различных форм ввода.

    • Игровой контроллер
    • Геймпад (или джойстик)
    • Пэддл (игровой контроллер)
    • Поворотный переключатель/манипулятор (или ручка)
    • Пульт Wii

    Устройства обработки изображений и ввода

    Датчик виден здесь на телевизоре. Он работает путем визуального обнаружения движения человека.

    Датчик Microsoft Kinect

    Устройства ввода видео используются для оцифровки изображений или видео из внешнего мира в компьютер. Информация может храниться в различных форматах в зависимости от требований пользователя.

    • Цифровая камера
    • Цифровая видеокамера
    • Портативный медиаплеер
    • Веб-камера
    • Сенсор Microsoft Kinect
    • Сканер изображений
    • Сканер отпечатков пальцев
    • Сканер штрих-кода
    • 3D-сканер
    • Лазерный дальномер
    • Отслеживание взгляда
    • Компьютерная томография
    • Магнитно-резонансная томография
    • Позитронно-эмиссионная томография
    • Медицинское УЗИ

    Устройства ввода звука

    Устройства ввода звука используются для захвата звука. В некоторых случаях устройство вывода звука можно использовать в качестве устройства ввода для захвата производимого звука.

    • Микрофоны
    • MIDI-клавиатура или другой цифровой музыкальный инструмент

    Устройства вывода

    Устройство вывода – это любая часть аппаратного компьютерного оборудования, используемая для передачи результатов обработки данных, выполняемой системой обработки информации (например, компьютером), которая преобразует сгенерированную электронным способом информацию в удобочитаемую форму. [3] [4]

    Устройства отображения

    Устройство отображения – это устройство вывода, которое визуально передает текст, графику и видеоинформацию. Информация, отображаемая на устройстве отображения, называется электронной копией, поскольку информация существует в электронном виде и отображается в течение временного периода времени. Устройства отображения включают ЭЛТ-мониторы, ЖК-мониторы и дисплеи, газовые плазменные мониторы и телевизоры. [5]

    Ввод/вывод

    Входные данные обрабатываются и становятся выходными данными

    Входные данные – это сигналы или данные, полученные системой, а выходные – сигналы или данные, отправленные из нее.

    Существует множество устройств ввода и вывода, таких как многофункциональные принтеры и компьютерные навигационные системы, которые используются для специализированных или уникальных приложений. [6] В вычислительной технике ввод/вывод относится к связи между системой обработки информации (например, компьютером) и внешним миром. Входы — это сигналы или данные, полученные системой, а выходы — это сигналы или данные, отправленные из нее.

    Примеры

    Эти примеры устройств вывода также включают устройства ввода/вывода. [7] [8] Принтеры и визуальные дисплеи являются наиболее распространенным типом устройств вывода для взаимодействия с людьми, но голосовая связь становится все более доступной. [9]

    • Динамики
    • Наушники
    • Экран (монитор)
    • Принтер
    • Помощь в голосовом общении
    • Автомобильная навигационная система
    • Тиснение Брайля
    • Проектор
    • Плоттер
    • Телевидение
    • Радио

    Память компьютера

    В вычислительной технике под памятью понимаются устройства, используемые для хранения информации для использования в компьютере. Термин «первичная память» используется для систем хранения данных, которые функционируют на высокой скорости (т. е. ОЗУ), в отличие от вторичной памяти, которая обеспечивает хранение программ и данных, доступ к которым медленный, но обеспечивает большую емкость памяти. При необходимости первичная память может быть сохранена во вторичной памяти с помощью метода управления памятью, называемого «виртуальной памятью». Архаичным синонимом памяти является хранилище. [10]

    Энергозависимая память

    Четыре разных RAM

    DDR-SD-RAM, SD-RAM и две старые формы RAM.

    Энергозависимая память – это компьютерная память, для хранения которой требуется питание. Большая часть современной полупроводниковой энергозависимой памяти представляет собой статическое ОЗУ (см. SRAM) или динамическое ОЗУ (см. DRAM). SRAM сохраняет свое содержимое до тех пор, пока подключено питание, и к ней легко подключиться, но она использует шесть транзисторов на бит. Динамическое ОЗУ сложнее в интерфейсе и управлении и требует регулярных циклов обновления, чтобы предотвратить потерю его содержимого.Однако DRAM использует только один транзистор и конденсатор на бит, что позволяет достичь гораздо более высокой плотности и, с большим количеством битов на микросхеме памяти, быть намного дешевле в расчете на бит. SRAM не подходит для системной памяти настольных компьютеров, где преобладает DRAM, но используется для их кэш-памяти. SRAM является обычным явлением в небольших встроенных системах, которым может потребоваться всего несколько десятков килобайт или меньше. Будущие технологии энергозависимой памяти, которые надеются заменить или конкурировать с SRAM и DRAM, включают Z-RAM, TTRAM, A-RAM и ETA RAM.

    Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

    Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

    Разностная машина

    цифровой компьютер, любое из класса устройств, способных решать задачи путем обработки информации в дискретной форме. Он работает с данными, включая величины, буквы и символы, которые выражены в двоичном коде, т. е. с использованием только двух цифр 0 и 1. Считая, сравнивая и манипулируя этими цифрами или их комбинациями в соответствии с набором инструкций, хранимых в своей памяти цифровая вычислительная машина может выполнять такие задачи, как управление производственными процессами и регулирование работы машин; анализировать и систематизировать огромные объемы бизнес-данных; и моделировать поведение динамических систем (например, глобальные погодные условия и химические реакции) в научных исследованиях.

    Далее следует краткое описание цифровых компьютеров. Полное описание см. в см. информатике: основные компьютерные компоненты.

    компьютерный чип. компьютер. Рука, держащая компьютерный чип. Центральный процессор (ЦП). история и общество, наука и техника, микрочип, материнская плата микропроцессора, компьютерная печатная плата

    Компьютеры размещают веб-сайты, состоящие из HTML, и отправляют текстовые сообщения так же просто, как. РЖУ НЕ МОГУ. Взломайте этот тест, и пусть какая-нибудь технология подсчитает ваш результат и раскроет вам его содержание.

    Функциональные элементы

    Типичная цифровая компьютерная система имеет четыре основных функциональных элемента: (1) оборудование ввода-вывода, (2) основную память, (3) блок управления и (4) арифметико-логическое устройство. Любое из ряда устройств используется для ввода данных и программных инструкций в компьютер и для получения доступа к результатам операции обработки. Общие устройства ввода включают клавиатуры и оптические сканеры; устройства вывода включают принтеры и мониторы. Информация, полученная компьютером от своего блока ввода, сохраняется в основной памяти или, если не для непосредственного использования, во вспомогательном запоминающем устройстве. Блок управления выбирает и вызывает инструкции из памяти в соответствующей последовательности и передает соответствующие команды соответствующему блоку. Он также синхронизирует различные рабочие скорости устройств ввода и вывода со скоростью арифметико-логического устройства (ALU), чтобы обеспечить правильное перемещение данных по всей компьютерной системе. АЛУ выполняет арифметические и логические алгоритмы, выбранные для обработки входящих данных, с чрезвычайно высокой скоростью — во многих случаях за наносекунды (миллиардные доли секунды). Основная память, блок управления и АЛУ вместе составляют центральный процессор (ЦП) большинства цифровых компьютерных систем, а устройства ввода-вывода и вспомогательные запоминающие устройства составляют периферийное оборудование.

    Разработка цифрового компьютера

    Блез Паскаль из Франции и Готфрид Вильгельм Лейбниц из Германии изобрели механические цифровые вычислительные машины в 17 веке. Однако обычно считается, что английский изобретатель Чарльз Бэббидж создал первый автоматический цифровой компьютер. В 1830-х годах Бэббидж разработал свою так называемую аналитическую машину, механическое устройство, предназначенное для объединения основных арифметических операций с решениями, основанными на собственных вычислениях. Планы Бэббиджа воплотили в себе большинство фундаментальных элементов современного цифрового компьютера. Например, они призывали к последовательному управлению, т. е. программному управлению, которое включало ветвление, циклирование, а также арифметические и запоминающие устройства с автоматической распечаткой. Однако устройство Бэббиджа так и не было завершено и было забыто до тех пор, пока его труды не были заново открыты более века спустя.

    Огромное значение в эволюции цифрового компьютера имели работы английского математика и логика Джорджа Буля. В различных эссе, написанных в середине 1800-х годов, Буль обсуждал аналогию между символами алгебры и символами логики, используемыми для представления логических форм и силлогизмов.Его формализм, работающий только с 0 и 1, стал основой того, что сейчас называется булевой алгеброй, на которой основаны теория и процедуры компьютерного переключения.

    Джону В. Атанасову, американскому математику и физику, приписывают создание первого электронного цифрового компьютера, который он построил с 1939 по 1942 год с помощью своего аспиранта Клиффорда Э. Берри. Конрад Цузе, немецкий инженер, фактически изолированный от других разработок, в 1941 году завершил строительство первой действующей вычислительной машины с программным управлением (Z3). В 1944 году Ховард Эйкен и группа инженеров корпорации International Business Machines (IBM) завершили работу над Harvard Mark I – машиной, операции обработки данных которой контролировались главным образом электрическими реле (коммутационными устройствами).

    Клиффорд Э. Берри и компьютер Атанасова-Берри

    Клиффорд Э. Берри и компьютер Атанасова-Берри, или ABC, c. 1942 г. ABC, возможно, был первым электронным цифровым компьютером.

    С момента разработки Harvard Mark I цифровой компьютер развивался быстрыми темпами. Последовательность достижений в компьютерном оборудовании, главным образом в области логических схем, часто делится на поколения, при этом каждое поколение включает группу машин, использующих общую технологию.

    В 1946 году Дж. Преспер Эккерт и Джон У. Мочли из Пенсильванского университета сконструировали ENIAC (аббревиатура от eэлектронный nмерический i). интегратор ии cкомпьютер), цифровая машина и первый электронный компьютер общего назначения. Его вычислительные возможности были заимствованы у машины Атанасова; оба компьютера включали электронные лампы вместо реле в качестве активных логических элементов, что привело к значительному увеличению скорости работы. Концепция компьютера с хранимой программой была представлена ​​в середине 1940-х годов, а идея хранения кодов инструкций, а также данных в электрически изменяемой памяти была реализована в EDVAC (electronic, d создать vпеременный аавтоматический cкомпьютер).

    Manchester Mark I

    Второе поколение компьютеров появилось в конце 1950-х годов, когда в продажу поступили цифровые машины, использующие транзисторы. Хотя этот тип полупроводникового устройства был изобретен в 1948 году, потребовалось более 10 лет опытно-конструкторских работ, чтобы сделать его жизнеспособной альтернативой электронной лампе. Небольшой размер транзистора, его большая надежность и относительно низкое энергопотребление значительно превосходили лампу. Его использование в компьютерных схемах позволило производить цифровые системы, которые были значительно эффективнее, меньше и быстрее, чем их предки первого поколения.

    первый транзистор

    Транзистор был изобретен в 1947 году в Bell Laboratories Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли.

    В конце 1960-х и 1970-х годах компьютерное оборудование стало еще более значительным. Первым было изготовление интегральной схемы, твердотельного устройства, содержащего сотни транзисторов, диодов и резисторов на крошечном кремниевом чипе. Эта микросхема сделала возможным производство мейнфреймов (крупномасштабных) компьютеров с более высокими рабочими скоростями, мощностью и надежностью при значительно меньших затратах. Другим типом компьютеров третьего поколения, которые были разработаны в результате микроэлектроники, были миникомпьютеры, машина значительно меньшего размера, чем стандартный мэйнфрейм, но достаточно мощная, чтобы управлять приборами целой научной лаборатории.

    интегральная схема

    Развитие крупномасштабной интеграции (БИС) позволило производителям оборудования разместить тысячи транзисторов и других связанных компонентов на одном кремниевом чипе размером с ноготь ребенка. Такая микросхема дала два устройства, которые произвели революцию в компьютерной технике. Первым из них был микропроцессор, представляющий собой интегральную схему, содержащую все арифметические, логические и управляющие схемы центрального процессора. Его производство привело к разработке микрокомпьютеров, систем размером не больше портативных телевизоров, но со значительной вычислительной мощностью.Другим важным устройством, появившимся из схем БИС, была полупроводниковая память. Это компактное запоминающее устройство, состоящее всего из нескольких микросхем, хорошо подходит для использования в миникомпьютерах и микрокомпьютерах. Кроме того, он находит применение во все большем количестве мейнфреймов, особенно в тех, которые предназначены для высокоскоростных приложений, из-за его высокой скорости доступа и большой емкости памяти. Такая компактная электроника привела в конце 1970-х годов к разработке персонального компьютера, цифрового компьютера, достаточно небольшого и недорогого, чтобы его могли использовать обычные потребители.

    микропроцессор

    К началу 1980-х интегральные схемы продвинулись до очень крупномасштабной интеграции (СБИС). Этот дизайн и технология производства значительно увеличили плотность схем микропроцессора, памяти и вспомогательных микросхем, т. Е. Те, которые служат для сопряжения микропроцессоров с устройствами ввода-вывода. К 1990-м годам некоторые схемы СБИС содержали более 3 миллионов транзисторов на кремниевой микросхеме площадью менее 0,3 квадратных дюйма (2 квадратных см).

    Цифровые компьютеры 1980-х и 90-х годов, использующие технологии БИС и СБИС, часто называют системами четвертого поколения. Многие микрокомпьютеры, произведенные в 1980-х годах, были оснащены одним чипом, на котором были интегрированы схемы процессора, памяти и функций интерфейса. (См. также суперкомпьютер.)

    Использование персональных компьютеров выросло в 1980-х и 90-х годах. Распространение Всемирной паутины в 1990-х годах привело миллионы пользователей к Интернету, всемирной компьютерной сети, и к 2019 году около 4,5 миллиардов человек, более половины населения мира, имели доступ к Интернету. Компьютеры становились меньше и быстрее, и в начале 21 века они были широко распространены в смартфонах, а затем и в планшетных компьютерах.

    iPhone 4

    Редакторы Британской энциклопедии Эта статья была недавно отредактирована и обновлена ​​Эриком Грегерсеном.

    Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

    Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

    Разностная машина

    цифровой компьютер, любое из класса устройств, способных решать задачи путем обработки информации в дискретной форме. Он работает с данными, включая величины, буквы и символы, которые выражены в двоичном коде, т. е. с использованием только двух цифр 0 и 1. Считая, сравнивая и манипулируя этими цифрами или их комбинациями в соответствии с набором инструкций, хранимых в своей памяти цифровая вычислительная машина может выполнять такие задачи, как управление производственными процессами и регулирование работы машин; анализировать и систематизировать огромные объемы бизнес-данных; и моделировать поведение динамических систем (например, глобальные погодные условия и химические реакции) в научных исследованиях.

    Далее следует краткое описание цифровых компьютеров. Полное описание см. в см. информатике: основные компьютерные компоненты.

    Техник работает с системной консолью на новом компьютере UNIVAC 1100/83 в Центре анализа флота, Corona Annex, Naval Weapons Station, Seal Beach, CA. 1 июня 1981 г. Приводы или считыватели магнитных лент Univac на заднем плане. Универсальный автоматический компьютер

    Как Интернет перемещает информацию между компьютерами? Какая операционная система сделана Microsoft? Войдите в этот тест и проверьте свои знания о компьютерах и операционных системах.

    Функциональные элементы

    Типичная цифровая компьютерная система имеет четыре основных функциональных элемента: (1) оборудование ввода-вывода, (2) основную память, (3) блок управления и (4) арифметико-логическое устройство. Любое из ряда устройств используется для ввода данных и программных инструкций в компьютер и для получения доступа к результатам операции обработки. Общие устройства ввода включают клавиатуры и оптические сканеры; устройства вывода включают принтеры и мониторы. Информация, полученная компьютером от своего блока ввода, сохраняется в основной памяти или, если не для непосредственного использования, во вспомогательном запоминающем устройстве. Блок управления выбирает и вызывает инструкции из памяти в соответствующей последовательности и передает соответствующие команды соответствующему блоку.Он также синхронизирует различные рабочие скорости устройств ввода и вывода со скоростью арифметико-логического устройства (ALU), чтобы обеспечить правильное перемещение данных по всей компьютерной системе. АЛУ выполняет арифметические и логические алгоритмы, выбранные для обработки входящих данных, с чрезвычайно высокой скоростью — во многих случаях за наносекунды (миллиардные доли секунды). Основная память, блок управления и АЛУ вместе составляют центральный процессор (ЦП) большинства цифровых компьютерных систем, а устройства ввода-вывода и вспомогательные запоминающие устройства составляют периферийное оборудование.

    Разработка цифрового компьютера

    Блез Паскаль из Франции и Готфрид Вильгельм Лейбниц из Германии изобрели механические цифровые вычислительные машины в 17 веке. Однако обычно считается, что английский изобретатель Чарльз Бэббидж создал первый автоматический цифровой компьютер. В 1830-х годах Бэббидж разработал свою так называемую аналитическую машину, механическое устройство, предназначенное для объединения основных арифметических операций с решениями, основанными на собственных вычислениях. Планы Бэббиджа воплотили в себе большинство фундаментальных элементов современного цифрового компьютера. Например, они призывали к последовательному управлению, т. е. программному управлению, которое включало ветвление, циклирование, а также арифметические и запоминающие устройства с автоматической распечаткой. Однако устройство Бэббиджа так и не было завершено и было забыто до тех пор, пока его труды не были заново открыты более века спустя.

    Огромное значение в эволюции цифрового компьютера имели работы английского математика и логика Джорджа Буля. В различных эссе, написанных в середине 1800-х годов, Буль обсуждал аналогию между символами алгебры и символами логики, используемыми для представления логических форм и силлогизмов. Его формализм, работающий только с 0 и 1, стал основой того, что сейчас называется булевой алгеброй, на которой основаны теория и процедуры компьютерного переключения.

    Джону В. Атанасову, американскому математику и физику, приписывают создание первого электронного цифрового компьютера, который он построил с 1939 по 1942 год с помощью своего аспиранта Клиффорда Э. Берри. Конрад Цузе, немецкий инженер, фактически изолированный от других разработок, в 1941 году завершил строительство первой действующей вычислительной машины с программным управлением (Z3). В 1944 году Ховард Эйкен и группа инженеров корпорации International Business Machines (IBM) завершили работу над Harvard Mark I – машиной, операции обработки данных которой контролировались главным образом электрическими реле (коммутационными устройствами).

    Клиффорд Э. Берри и компьютер Атанасова-Берри

    Клиффорд Э. Берри и компьютер Атанасова-Берри, или ABC, c. 1942 г. ABC, возможно, был первым электронным цифровым компьютером.

    С момента разработки Harvard Mark I цифровой компьютер развивался быстрыми темпами. Последовательность достижений в компьютерном оборудовании, главным образом в области логических схем, часто делится на поколения, при этом каждое поколение включает группу машин, использующих общую технологию.

    В 1946 году Дж. Преспер Эккерт и Джон У. Мочли из Пенсильванского университета сконструировали ENIAC (аббревиатура от eэлектронный nмерический i). интегратор ии cкомпьютер), цифровая машина и первый электронный компьютер общего назначения. Его вычислительные возможности были заимствованы у машины Атанасова; оба компьютера включали электронные лампы вместо реле в качестве активных логических элементов, что привело к значительному увеличению скорости работы. Концепция компьютера с хранимой программой была представлена ​​в середине 1940-х годов, а идея хранения кодов инструкций, а также данных в электрически изменяемой памяти была реализована в EDVAC (electronic, d создать vпеременный аавтоматический cкомпьютер).

    Manchester Mark I

    Второе поколение компьютеров появилось в конце 1950-х годов, когда в продажу поступили цифровые машины, использующие транзисторы. Хотя этот тип полупроводникового устройства был изобретен в 1948 году, потребовалось более 10 лет опытно-конструкторских работ, чтобы сделать его жизнеспособной альтернативой электронной лампе. Небольшой размер транзистора, его большая надежность и относительно низкое энергопотребление значительно превосходили лампу. Его использование в компьютерных схемах позволило производить цифровые системы, которые были значительно эффективнее, меньше и быстрее, чем их предки первого поколения.

    первый транзистор

    Транзистор был изобретен в 1947 году в Bell Laboratories Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли.

    В конце 1960-х и 1970-х годах компьютерное оборудование стало еще более значительным. Первым было изготовление интегральной схемы, твердотельного устройства, содержащего сотни транзисторов, диодов и резисторов на крошечном кремниевом чипе. Эта микросхема сделала возможным производство мейнфреймов (крупномасштабных) компьютеров с более высокими рабочими скоростями, мощностью и надежностью при значительно меньших затратах. Другим типом компьютеров третьего поколения, которые были разработаны в результате микроэлектроники, были миникомпьютеры, машина значительно меньшего размера, чем стандартный мэйнфрейм, но достаточно мощная, чтобы управлять приборами целой научной лаборатории.

    интегральная схема

    Развитие крупномасштабной интеграции (БИС) позволило производителям оборудования разместить тысячи транзисторов и других связанных компонентов на одном кремниевом чипе размером с ноготь ребенка. Такая микросхема дала два устройства, которые произвели революцию в компьютерной технике. Первым из них был микропроцессор, представляющий собой интегральную схему, содержащую все арифметические, логические и управляющие схемы центрального процессора. Его производство привело к разработке микрокомпьютеров, систем размером не больше портативных телевизоров, но со значительной вычислительной мощностью. Другим важным устройством, появившимся из схем БИС, была полупроводниковая память. Это компактное запоминающее устройство, состоящее всего из нескольких микросхем, хорошо подходит для использования в миникомпьютерах и микрокомпьютерах. Кроме того, он находит применение во все большем количестве мейнфреймов, особенно в тех, которые предназначены для высокоскоростных приложений, из-за его высокой скорости доступа и большой емкости памяти. Такая компактная электроника привела в конце 1970-х годов к разработке персонального компьютера, цифрового компьютера, достаточно небольшого и недорогого, чтобы его могли использовать обычные потребители.

    микропроцессор

    К началу 1980-х интегральные схемы продвинулись до очень крупномасштабной интеграции (СБИС). Этот дизайн и технология производства значительно увеличили плотность схем микропроцессора, памяти и вспомогательных микросхем, т. Е. Те, которые служат для сопряжения микропроцессоров с устройствами ввода-вывода. К 1990-м годам некоторые схемы СБИС содержали более 3 миллионов транзисторов на кремниевой микросхеме площадью менее 0,3 квадратных дюйма (2 квадратных см).

    Цифровые компьютеры 1980-х и 90-х годов, использующие технологии БИС и СБИС, часто называют системами четвертого поколения. Многие микрокомпьютеры, произведенные в 1980-х годах, были оснащены одним чипом, на котором были интегрированы схемы процессора, памяти и функций интерфейса. (См. также суперкомпьютер.)

    Использование персональных компьютеров выросло в 1980-х и 90-х годах. Распространение Всемирной паутины в 1990-х годах привело миллионы пользователей к Интернету, всемирной компьютерной сети, и к 2019 году около 4,5 миллиардов человек, более половины населения мира, имели доступ к Интернету. Компьютеры становились меньше и быстрее, и в начале 21 века они были широко распространены в смартфонах, а затем и в планшетных компьютерах.

    iPhone 4

    Редакторы Британской энциклопедии Эта статья была недавно отредактирована и обновлена ​​Эриком Грегерсеном.

    Читайте также: