На домашнем компьютере получите информацию о целях процессов, заполнив таблицу
Обновлено: 22.11.2024
Сегодня невозможно представить жизнь без компьютера. Мы делаем свою работу, развлекаемся и узнаем то, что нам нужно знать, с помощью компьютеров. Иногда мы забываем, что смартфон — это всего лишь версия нашего настольного ПК размером с ладонь.
Хотя термин "компьютер" может применяться практически к любому устройству, в котором есть микропроцессор, большинство людей думают о компьютере как об устройстве, которое получает ввод от пользователя с помощью мыши или клавиатуры, каким-то образом обрабатывает его и отображает результат. на экране. Аппаратное и программное обеспечение компьютеров развивалось стремительными темпами за последние несколько десятилетий — громоздкие настольные машины начала 80-х совсем не похожи на современные планшеты с сенсорным экраном.
По сравнению с компьютерами конца 20 века, современные компьютеры гораздо более взаимосвязаны благодаря неумолимому распространению Интернета и различных веб-технологий. И эта самая связанность изменила сами компьютеры. Прошли те времена модемов с коммутируемым доступом, которые прокладывали себе путь к системам электронных досок объявлений. Теперь компьютеры используют Wi-Fi и широкополосные соединения, чтобы прокладывать себе путь через мультимедийный контент — от новостей в прямом эфире до фильмов, многопользовательских игр и многого другого.
Существует множество терминов, используемых для описания различных типов компьютеров. Большинство этих слов подразумевают размер, предполагаемое использование или возможности компьютера. Начнем с самого очевидного.
10: Всемогущий персональный компьютер
Компьютерный терминал IBM, используемый для официального подсчета очков в туре PGA, выставлен в пресс-центре чемпионата Mercedes 1994 года в Карлсбаде, Калифорния. С тех пор компьютеры сильно изменились. Саймон П. Барнетт/Allsport/Getty Images
Под персональным компьютером (ПК) понимается компьютер, предназначенный для общего использования одним человеком. Хотя iMac, безусловно, является ПК, большинство людей вместо этого связывают эту аббревиатуру с компьютерами, работающими под управлением операционной системы Windows. ПК сначала назывались микрокомпьютерами, потому что они были полноценными компьютерами, но построены в меньшем масштабе, чем огромные системы, используемые большинством предприятий.
В 1981 году легендарный производитель технологий IBM представил свой первый ПК, в котором использовалась уже ставшая легендарной операционная система Microsoft – MS-DOS (Microsoft Disk Operating System). Вслед за этим в 1983 году Apple создала Lisa, один из первых ПК с GUI (графическим пользовательским интерфейсом) [источники: Альфред, Кэбелл]. Это причудливый способ сказать, что «значки» были видны на экране. До этого экраны компьютеров были довольно простыми.
При этом важнейшие компоненты, такие как ЦП (центральные процессоры) и ОЗУ (оперативная память), развивались с головокружительной скоростью, делая компьютеры быстрее и эффективнее. В 1986 году Compaq выпустила 32-битный ЦП на своих 386 машинах. И, конечно же, Intel заняла место в компьютерной истории в 1993 году со своим первым процессором Pentium [источники: PCWorld, Tom's Hardware].
Теперь персональные компьютеры оснащены сенсорными экранами, всевозможными встроенными средствами связи (такими как Bluetooth и Wi-Fi) и операционными системами, которые меняются с каждым днем. Как и размеры и формы самих машин.
До середины 1980-х у потребителей был только один выбор для ПК — настольный формат. Эти бьющие по коленям ящики (называемые «башнями») были достаточно большими, чтобы проткнуть вам голени. Оснащенные большими мониторами с ЭЛТ (электронно-лучевой трубкой), они заполняли ваше домашнее рабочее пространство или офис. От настольных систем ожидалось, что вы установите компьютер в постоянном месте. Большинство настольных компьютеров предлагают большую мощность, объем памяти и универсальность по меньшей цене, чем их портативные собратья, что сделало их популярными компьютерами в 1990-х годах, когда ноутбуки стоили тысячи долларов [источник: Britannica].
В наши дни настольные компьютеры намного дешевле, чем 20 лет назад, и вы можете купить их всего за несколько сотен долларов. Это далеко от тысяч долларов, которые они стоили в 80-х. На самом деле, один из первых бизнес-ПК Hewlett-Packard, модель 300, в 1972 году стоил 95 000 долларов [источник: Comen].
Поскольку смартфоны и ноутбуки продолжают доминировать в мире, а их цены сделали их доступными для большинства потребителей, настольные компьютеры уступают место динозаврам. В 2017 году мировые продажи настольных компьютеров упали ниже 100 млн, что намного меньше, чем 161,6 млн ноутбуков, ушедших с полок в том же году [источник: Moore-Colyer].
Но не плачьте из-за рабочего стола. Этот формат ПК уступает место таким же мощным продуктам с огромным дополнительным преимуществом портативности. А заядлые геймеры по-прежнему ценят настольные компьютеры.
Ноутбуки заменили настольные компьютеры в качестве рабочего компьютера. Эта женщина использует свой для видеоконференции. FS Productions/Getty Images
Давным-давно, если вы хотели использовать ПК, вам нужно было использовать настольный компьютер.Инженеры просто не могли упаковать сложные системы ПК в портативную коробку. Однако в середине 1980-х годов многие крупные производители компьютеров предприняли усилия по популяризации портативных компьютеров.
Ноутбуки – это портативные компьютеры, в которых дисплей, клавиатура, указывающее устройство или шаровой манипулятор, процессор, память и жесткий диск объединены в корпусе с батарейным питанием, который немного больше средней книги в твердом переплете.
Первый настоящий коммерческий ноутбук был далек от стройных устройств, заполонивших сегодня розничные магазины. Osborne 1, выпущенный в 1981 году, продавался примерно за 1800 долларов, имел 64 КБ памяти и весил около 24 фунтов (10 кг). Укрепляя бицепсы, Osborne 1 также тренировал глаза, так как экран был всего 5 дюймов (12 сантиметров) [источник: Computing History].
К счастью, производители быстро улучшили внешний вид ноутбуков. Всего два года спустя TRS-80 Model 100 от Radio Shack упаковала свои компоненты в 4-фунтовую (8-килограммовую) раму, но ей не хватало мощности. К концу десятилетия UltraLite от NEC разрушил барьеры, втиснув реальную вычислительную эффективность в первый настоящий ноутбук (то есть очень легкий ноутбук), который весил всего 5 фунтов (2,2 кг). Гонка за ультрапортативность официально началась [источник: Bellis]. Однако до 2005 года продажи ноутбуков не превосходили ПК [источник: Артур].
7: Нетбуки и планшеты
Пользователь рисует кости руки на 9,7-дюймовом iPad от Apple во время презентации устройства в средней школе Lane Tech College Prep High School, 27 марта 2018 г. в Чикаго, штат Иллинойс. Скотт Олсон/Getty Images
Нетбуки – это сверхпортативные компьютеры, которые даже меньше традиционных ноутбуков. Чрезвычайная экономичность нетбуков (примерно 200 долларов) означает, что они дешевле почти любого совершенно нового ноутбука, который вы найдете в розничных магазинах. Однако внутренние компоненты нетбуков менее мощные, чем в обычных ноутбуках [источник: Крынин].
Нетбуки впервые появились в 2007 году, прежде всего как средство доступа к Интернету и веб-приложениям, от электронной почты до потоковой передачи музыки и фильмов и веб-серфинга. Они невероятно компактны, но в результате их технические характеристики часто напоминают сильно урезанный ноутбук. У них небольшие дисплеи (всего 6 или 7 дюймов или 15-18 сантиметров), небольшой объем памяти (возможно, до 64 ГБ), а иногда они экономят или вообще пропускают порты данных (например, USB или HDMI), которыми обладают традиционные ноутбуки. Многие нетбуки производятся мелкими производителями, так как крупные компании не могут быть обеспокоены низкой рентабельностью этих более дешевых машин [источник: Lenovo].
Из-за относительно медленных процессоров и небольшого объема памяти нетбуки не могут выполнять тяжелую работу с графическими приложениями или сложными играми. Вместо этого они лучше всего подходят для задачи, благодаря которой они получили свое название: веб-серфинг [источник: Крынин].
Планшеты в значительной степени заменили нишу, занятую нетбуками. Планшеты — это тонкие плоские устройства, которые выглядят как увеличенные версии смартфонов. Впервые они были произведены компанией Lenovo в 2000 году, но популяризированы Apple в 2010 году с выпуском своего iPad [источник: Bort].
Планшеты могут выполнять почти все функции ноутбуков, но не имеют встроенных вентиляторов, которые есть на ПК. Поэтому им приходится полагаться на менее производительные процессоры, которые не будут потреблять столько тепла и энергии батареи. Они также имеют меньшую емкость памяти, чем традиционные ПК. В старых планшетах использовались те же операционные системы, что и в мобильных телефонах, но в новых планшетах используется полноценная операционная система, такая как Microsoft Windows 10 [источник: Lenovo].
Планшеты более портативны, чем ПК, имеют более длительное время автономной работы, но при этом могут выполнять такие же действия, как смартфоны, например фотографировать, играть в игры и рисовать стилусом. Для тех, кому нравится функциональность клавиатуры ноутбука, некоторые планшеты поставляются с клавиатурой (присоединенной или съемной), что позволяет сочетать лучшее из обоих миров.
6: Карманные компьютеры
Удивительно, сколько компьютерных функций может выполнять смартфон, включая фотосъемку. LWA/Дэнн Тардиф/Getty Images
Ранним компьютерам 20 века, как известно, требовались целые комнаты. В наши дни вы можете носить гораздо больше вычислительной мощности прямо в кармане брюк. Карманные компьютеры, такие как смартфоны и КПК, – одно из знаковых устройств нашей эпохи [источник: Артур].
Появившиеся в 1990-х годах персональные цифровые помощники (КПК) представляли собой тесно интегрированные компьютеры, которые часто использовали флэш-память вместо жесткого диска для хранения данных. Эти компьютеры обычно не имели клавиатур, но полагались на технологию сенсорного экрана для пользовательского ввода. КПК обычно были меньше романа в мягкой обложке, очень легкие и с разумным временем автономной работы. Какое-то время они были популярными устройствами для календарей, электронной почты и простых функций обмена сообщениями [источник: Britannica]. Помните Palm Pilot и BlackBerry?
Но когда началась революция смартфонов, КПК потеряли свой блеск.Смартфоны, такие как iPhone и Samsung Galaxy, сочетают в себе функции вызовов и функциональность КПК, а также полноценные компьютерные возможности, которые с каждым днем становятся все более потрясающими. Они имеют интерфейсы с сенсорным экраном, высокоскоростные процессоры, много гигабайт памяти, полные возможности подключения (включая Bluetooth, Wi-Fi и т. д.), камеры с двумя объективами, высококачественные аудиосистемы и другие функции, которые поразили бы электронику. инженеров полувековой давности. Хотя смартфоны в той или иной форме существуют с 2000 года, широко разрекламированный дебют iPhone 3G в 2007 году принес устройство в массы. Внешний вид, ощущения и функциональность этого iPhone стали образцом для всех последующих смартфонов [источник: Нгуен].
Инженеры часто используют рабочие станции, хотя их популярность снижается по мере того, как "обычные" компьютеры становятся все более мощными. Монти Ракусен/Getty Images
Рабочая станция — это просто настольный компьютер с более мощным процессором, дополнительной памятью, графическими адаптерами высокого класса и расширенными возможностями для выполнения специальной группы задач, таких как трехмерная графика или разработка игр [источник: Intel].< /p>
Рабочие станции, как и обычные настольные компьютеры, предназначены для отдельных пользователей. Но они отличаются от настольных компьютеров тем, что они намного, намного быстрее. Как правило, такие рабочие лошадки для своих сотрудников покупают инженерные фирмы или мультимедийные компании [источник: TechTarget].
Мощность рабочей станции недешева. В то время как малые предприятия могут легко найти обычные настольные компьютеры всего за несколько сотен долларов, рабочие станции могут стоить в три раза дороже. Базовые рабочие станции легко продаются за 1500 долларов США и в спешке удваиваются в цене [источник: Benton].
Но в то время как дешевые настольные компьютеры состоят из столь же дешевых (читай: иногда ненадежных) компонентов, рабочие станции — это качественные машины, предназначенные для серьезного бизнеса. Их можно оставить включенными на ночь для обработки чисел или рендеринга анимации. Поэтому эти компьютеры оснащены избыточными жесткими дисками для безопасности данных, а также более быстрыми процессорами и твердотельными накопителями большой емкости. Все эти факторы указывают на то, что машина больше предназначена для получения прибыли, чем для базовой обработки текста или случайных игр в «Сапёр» [источник: Benton].
Подробный вид компьютерного и дата-центра ЦЕРН и фермы серверов главного помещения площадью 1450 квадратных метров в крупнейшей в мире лаборатории физики элементарных частиц, 19 апреля 2017 г. в Мейрине, Швейцария. Дин Мутаропулос/Getty Images
Компьютер, оптимизированный для предоставления услуг другим компьютерам по сети, серверы обычно имеют мощные процессоры, много памяти и большие жесткие диски.
В отличие от настольного или портативного ПК, вы не садитесь за сервер и не печатаете. Вместо этого сервер обеспечивает компьютерную мощность — и большую ее часть — через локальную сеть (LAN) или через Интернет. Малые и крупные компании используют серверы для предоставления информации, обработки заказов, отслеживания данных о доставке, обработки научных формул и многого другого. Серверы часто хранятся на стойках в выделенном серверном помещении, которое в некоторых компаниях может напоминать склады.
Как и обычные ПК, серверы имеют типичные компьютерные компоненты. У них есть материнские платы, оперативная память, видеокарты, блоки питания и широкие сетевые подключения для любых нужд. Однако у них обычно нет специальных дисплеев. Вместо этого ИТ-специалисты используют один монитор для настройки нескольких серверов и управления ими, объединяя свои вычислительные мощности для еще большей скорости.
Вы когда-нибудь задумывались, как такая служба, как Google, может прогнозировать ваши поисковые запросы в режиме реального времени . а затем мгновенно ответить на ваши самые глубокие вопросы? Это все из-за серверов. По некоторым оценкам, компания обслуживает и управляет примерно 2,5 миллионами серверов в огромных центрах обработки данных, разбросанных по всей Земле [источник: Data Center Knowledge].
Посетители смотрят на мейнфрейм IBM z13 на стенде IBM на выставке технологий CeBIT 2015 в Ганновере, Германия. Шон Гэллап/Getty Images
На заре вычислительной техники мэйнфреймы представляли собой огромные компьютеры, которые могли занимать целую комнату или даже целый этаж! Поскольку размер компьютеров уменьшился, а их мощность увеличилась, термин «мейнфрейм» вышел из употребления в пользу корпоративного сервера. Тем не менее, вы все еще будете слышать этот термин, особенно в крупных компаниях, для описания огромных машин, обрабатывающих миллионы транзакций каждый день и одновременно работающих для удовлетворения потребностей сотен, если не тысяч отдельных пользователей. Хотя мэйнфреймы традиционно означали централизованный компьютер, подключенный к менее мощным устройствам, таким как рабочие станции, это определение размывается, поскольку меньшие машины получают больше мощности, а мейнфреймы становятся более гибкими [источник: IBM].
Мейнфреймы впервые появились в эпоху после Второй мировой войны, когда Министерство обороны США сосредоточило свои усилия на борьбе с холодной войной.Несмотря на то, что серверов становится все больше, мейнфреймы по-прежнему используются для обработки некоторых из самых больших и сложных баз данных в мире. Они помогают защитить бесчисленное количество конфиденциальных транзакций, от мобильных платежей до сверхсекретной корпоративной информации [источник: Alba].
Действительно, IBM, один из самых устойчивых производителей мэйнфреймов в мире на протяжении более полувека, в 2018 году впервые за пять лет продемонстрировала всплеск продаж мейнфреймов. Отчасти это связано с тем, что мэйнфреймы могут вместить так много вычислительных мощностей на площади, которая меньше стойки современных высокоскоростных серверов [источник: Холл].
Сотрудник Немецкого центра климатических вычислений (DKRZ, или Deutsches Klimarechenzentrum) стоит у суперкомпьютера MistralÓ 7 июня 2017 года в Гамбурге, Германия. Этот суперкомпьютер обрабатывает данные для моделирования климата и системы Земли. Моррис Макматцен/Getty Images
Такой тип компьютеров обычно стоит сотни тысяч или даже миллионы долларов. Хотя некоторые суперкомпьютеры представляют собой отдельные компьютерные системы, большинство из них состоит из нескольких высокопроизводительных компьютеров, работающих параллельно как единая система. Самые известные суперкомпьютеры созданы Cray Supercomputers.
Суперкомпьютеры отличаются от мейнфреймов. Оба типа компьютеров обладают невероятной вычислительной мощностью для самых интенсивных промышленных и научных расчетов на Земле. Мейнфреймы обычно настраиваются для обеспечения максимальной надежности данных.
Суперкомпьютеры, с другой стороны, – это гоночные машины Формулы 1 в компьютерном мире, созданные для головокружительной скорости обработки данных, чтобы компании могли быстро выполнять вычисления, на выполнение которых другим системам могут уйти дни, недели или даже месяцы. Их часто можно найти в таких местах, как центры атомных исследований, шпионские агентства, научные институты или станции прогнозирования погоды, где скорость имеет жизненно важное значение. Например, Национальное управление океанических и атмосферных исследований США, обладающее одними из самых передовых в мире возможностей прогнозирования погоды, использует одни из самых быстрых в мире компьютеров, способных выполнять более 8 квадриллионов вычислений в секунду [источники: Hardawar, NOAA].
Такая умопомрачительная компьютерная мощь обходится столь же умопомрачительной ценой. Например, суперкомпьютер Summit Национальной лаборатории Ок-Риджа Министерства энергетики США стоит 200 миллионов долларов. Это первый суперкомпьютер, созданный для работы с приложениями ИИ [источник: Wolfson].
Смарт-часы и другие носимые устройства — это следующая версия компьютеров. Этот говорит о пульсе владельца. Гвидо Мит/Getty Images
Последняя тенденция в области вычислительной техники – носимые компьютеры. По сути, обычные компьютерные приложения (электронная почта, база данных, мультимедиа, календарь/планировщик) интегрированы в часы, сотовые телефоны, защитные очки и даже одежду. Многие другие носимые устройства предназначены для любителей активного отдыха и любителей фитнеса и позволяют им отслеживать свое местоположение, высоту над уровнем моря, сожженные калории, шаги, скорость и многое-многое другое.
Четвертая версия Apple iWatch является одним из самых популярных носимых устройств на сегодняшний день. Эти маленькие часы обладают многими функциями полноценного смартфона. Это позволяет вам выполнять обычные текстовые сообщения и электронную почту. И у них есть встроенный сотовый телефон, в отличие от некоторых других смарт-часов, которые должны быть сопряжены с телефоном, чтобы совершать звонки. У него даже есть встроенный электрический датчик сердца, с помощью которого вы можете снять электрокардиограмму и сразу же поделиться ею со своим врачом [источник: Apple].
Но часы — это только начало. Вшитые аксессуары для одежды растут, как и умные очки, умные ремни, мониторы сна, трекеры сердечного ритма и интеллектуальные наушники-вкладыши. Компания под названием MC10 даже рекламирует пластыри для кожи, которые будут отслеживать различные биологические процессы, происходящие в вашем теле [источник: Pervasive Computing].
Носимые устройства — это действительно новый горизонт в области персональных компьютеров. Их гибкость и поражающий воображение потенциал говорят о том, что компьютерная революция еще не закончилась. Во всяком случае, эра ПК только начинается.
Первоначально опубликовано: 14 ноября 2008 г.
Часто задаваемые вопросы о типах компьютеров
Какие бывают компьютеры?
10 типов компьютеров включают персональные компьютеры, настольные компьютеры, ноутбуки, планшеты, карманные компьютеры, серверы, рабочие станции, мейнфреймы, носимые компьютеры и суперкомпьютеры.
Что такое компьютер?
Компьютер – это любое устройство с микропроцессором, обрабатывающим информацию. У него есть оборудование, программное обеспечение и экран для отображения.
Какие наиболее распространенные типы компьютеров и их функции?
Ноутбуки, портативные устройства, носимые устройства и настольные компьютеры – самые распространенные типы компьютеров на сегодняшний день. Настольные компьютеры являются старейшими компьютерами и используются для запуска большого количества программ и доступа в Интернет. Ноутбуки — это портативные версии настольных компьютеров, которые меньше по размеру, поэтому их можно легко носить с собой.Карманные компьютеры (смартфоны) и носимые устройства предлагают множество функций, таких как подключение по Bluetooth, игры, аудиосистемы, отслеживание активности и камеры.
поиск меню
Урок 11: Начало работы с вашим первым компьютером
Начало работы с вашим первым компьютером
Компьютер – это больше, чем просто еще один бытовой прибор. Огромное количество информации и возможностей может быть ошеломляющим. Но вы можете многого добиться с помощью компьютера, и его использование может быть хорошим опытом. Давайте рассмотрим, как начать работу с вашим первым компьютером.
Включение компьютера в первый раз может отличаться от одного компьютера к другому. Ваш опыт может отличаться от этого урока. Можно попросить кого-нибудь о помощи.
Если вы используете настольный компьютер, перед продолжением убедитесь, что клавиатура, мышь и монитор подключены к корпусу компьютера. Просмотрите наш урок по настройке компьютера, чтобы узнать, как это сделать.
Включение компьютера
Самый первый шаг — включить компьютер. Для этого найдите и нажмите кнопку питания. На каждом компьютере она находится в другом месте, но у нее будет значок универсальной кнопки питания (показан ниже).
После включения компьютеру требуется некоторое время, прежде чем он будет готов к использованию. На экране могут мигать несколько разных дисплеев. Этот процесс называется загрузкой и может занять от 15 секунд до нескольких минут.
После загрузки компьютера он может быть готов к использованию или может потребоваться вход в систему. Это означает идентификацию себя путем ввода имени пользователя или выбора профиля, а затем ввода пароля. Если вы никогда раньше не входили в свой компьютер, вам может потребоваться создать учетную запись.
Клавиатура и мышь
Вы взаимодействуете с компьютером в основном с помощью клавиатуры и мыши или трекпада на ноутбуках. Обучение использованию этих устройств имеет важное значение для обучения использованию компьютера. Большинству людей удобно разместить клавиатуру на столе прямо перед собой, а мышь — сбоку от клавиатуры.
Мышь управляет указателем на экране. Всякий раз, когда вы перемещаете мышь по столу, указатель будет перемещаться аналогичным образом. Мышь обычно имеет две кнопки, которые называются левой кнопкой и правой кнопкой. Вы часто будете взаимодействовать с компьютером, наведя указатель мыши на что-то на экране компьютера, а затем нажав одну из кнопок.
На ноутбуках вместо мыши можно использовать трекпад, расположенный под клавиатурой. Просто проведите пальцем по трекпаду, чтобы переместить указатель на экране. На некоторых трекпадах нет кнопок, поэтому для нажатия нужно либо нажать, либо коснуться трекпада.
Клавиатура позволяет вводить буквы, цифры и слова на компьютере. Всякий раз, когда вы видите мигающую вертикальную линию, называемую курсором, вы можете начать печатать.
Обратите внимание, что указатель мыши также называется курсором, но имеет другую форму. Курсор клавиатуры также называется точкой ввода.
Использование компьютера
Основной экран, с которого вы начинаете работу, — это рабочий стол. Это что-то вроде главного меню или оглавления. Отсюда вы можете получить доступ к программам и функциям, необходимым для использования вашего компьютера.
Значки используются для представления различных файлов, приложений и команд на вашем компьютере. Значок — это небольшое изображение, предназначенное для того, чтобы дать вам представление о том, что оно представляет, например логотип. Двойной щелчок по значку на рабочем столе откроет это приложение или файл.
Кнопка – это команда, которая выполняет определенную функцию в приложении. Наиболее часто используемые команды в программе будут представлены кнопками.
Меню представляют собой организованные наборы команд и ярлыков. Щелкните меню, чтобы открыть его и отобразить содержащиеся в нем команды и ярлыки. Затем щелкните элемент в меню, чтобы выполнить его.
Когда вы открываете приложение или папку, они отображаются в отдельном окне. Окно — это замкнутая область, как изображение внутри изображения, со своими собственными меню и кнопками, характерными для этой программы. Вы можете переупорядочивать несколько окон на рабочем столе и переключаться между ними.
Что дальше?
Хорошо, это только основы использования компьютера. В следующем уроке мы поговорим о том, как использовать конкретную операционную систему вашего компьютера.
Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.
Что такое компьютерная сеть?
Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).
Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, таком как офисное здание, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.
Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.
Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.
Типы компьютерных сетей
По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:
Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.
WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.
WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.
MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.
PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.
SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)
CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.
VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.
Важные термины и понятия
Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:
IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети.Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.
Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.
Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.
Коммутаторы. Коммутатор — это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:
Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.
Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.
Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.
Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.
Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.
Примеры компьютерных сетей
Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.
В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.
Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.
The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.
Компьютерные сети и Интернет
Провайдеры интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.
Как они работают?
Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.
Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.
Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями.Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.
Архитектура
Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.
Основные типы сетевой архитектуры
В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.
Топология сети
Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.
Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:
При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.
В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.
В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.
сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.
Безопасность
Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.
Существует много точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.
Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.
Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.
Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.
Ячеистые сети
Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.
Тип ячеистых сетей
Существует два типа ячеистых сетей — полная и частичная:
- В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости.Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
- беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.
Балансировщики нагрузки и сети
Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.
Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.
Сети доставки контента
Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.
Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.
Компьютерные сетевые решения и IBM
Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.
Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все это упомянуто выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:
-
— это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.
Сетевые сервисы в IBM Cloud предоставляют вам сетевые решения для повышения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.
Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.
ИЭУ
- Состояние образованияДайджест статистики образованияПрогнозы статистики образованияТематические исследования
- Национальная программа оценки образовательного прогресса (NAEP) для международной оценки компетенций взрослых (PIAAC)
- Программа международной деятельности (IAP)
- Продольное исследование раннего детства (ECLS)Национальное обследование образования домохозяйств (NHES)
- Common Core of Data (CCD)Secondary Longitudinal Studies ProgramEducation Demographic and Geographic Estimates (EDGE)National Teacher and Principal Survey (NTPS)подробнее.
- Программа библиотечной статистики
- Бакалавриат и выше (B&B)Статистика профессионального/технического образования (CTES)Интегрированная система данных о высшем образовании (IPEDS)Национальное исследование помощи учащимся послесреднего образования (NPSAS)подробнее.
- Общие стандарты данных в сфере образования (CEDS)Национальный форум по статистике образованияГосударственная программа грантов для систем продольных данных — (SLDS)подробнее.
- Программа статистических стандартов Национального кооператива послесреднего образования (NPEC) для дистанционного обучения.
- EDATDelta Cost ProjectIPEDS Data CenterКак подать заявку на лицензию с ограниченным использованием
- Таблицы ASC-EDЛаборатория данныхЭлементарная вторичная информационная системаInternational Data ExplorerIPEDS Data CenterNAEP Data Explorer
- Панель управления ACSCollege NavigatorЧастные школыГосударственные школьные округаГосударственные школыПоиск школ и колледжей
- Профили штатов NAEP (nationsreportcard.gov)Поиск равных по финансам округа государственных школЦентр статистики финансов образованияЦентр данных IPEDS
- Инструмент вопросов NAEPИнструмент вопросов NAAL
- Панель управления ACS-EDКарты ACS-EDКарта колледжаПоиск по регионуMapEdSAFEMapSchool and District Navigator
- Инвентаризация библиографических данных
- ОценкиРаннее детствоНачальное и среднее образованиеБиблиотекаПослешкольное образование и дополнительные ресурсы
- Блог NCESЧто нового в NCESКонференции/обучениеНовостиFlashВозможности финансированияПресс-релизыStatChat
- Поиск по публикациям и продуктамГодовые отчетыЛицензии на данные с ограниченным использованием
Последние публикацииПо предметному указателю A-ZПо областям исследований и программДанные Продукты за последние 6 месяцев - О NCESCommissionerСвязаться с NCESStaffHelp
- Сообщение будет начинаться с вершины стека протоколов на вашем компьютере и продвигаться вниз.
- Если отправляемое сообщение длинное, каждый уровень стека, через который проходит сообщение, может разбивать сообщение на более мелкие фрагменты данных. Это связано с тем, что данные, отправляемые через Интернет (и большинство компьютерных сетей), отправляются управляемыми фрагментами. В Интернете эти фрагменты данных называются пакетами .
- Пакеты будут проходить через прикладной уровень и переходить на уровень TCP. Каждому пакету присваивается номер порта. Порты будут объяснены позже, но достаточно сказать, что многие программы могут использовать стек TCP/IP и отправлять сообщения. Нам нужно знать, какая программа на целевом компьютере должна получить сообщение, потому что она будет прослушивать определенный порт.
- После прохождения уровня TCP пакеты переходят на уровень IP. Здесь каждый пакет получает адрес назначения 5.6.7.8.
- Теперь, когда у наших пакетов сообщений есть номер порта и IP-адрес, они готовы к отправке через Интернет. Аппаратный уровень заботится о преобразовании наших пакетов, содержащих буквенный текст нашего сообщения, в электронные сигналы и их передаче по телефонной линии.
- На другом конце телефонной линии ваш интернет-провайдер имеет прямое подключение к Интернету. Маршрутизатор провайдера проверяет адрес назначения в каждом пакете и определяет, куда его отправить. Часто следующей остановкой пакета является другой маршрутизатор. Подробнее о маршрутизаторах и интернет-инфраструктуре позже.
- В конце концов пакеты достигают компьютера 5.6.7.8. Здесь пакеты начинаются с нижней части стека TCP/IP целевого компьютера и идут вверх.
- По мере продвижения пакетов вверх по стеку все данные маршрутизации, добавленные стеком отправляющего компьютера (например, IP-адрес и номер порта), удаляются из пакетов.
- Когда данные достигают вершины стека, пакеты снова собираются в исходную форму: "Привет, компьютер 5.6.7.8!"
- Почтовый клиент (Netscape Mail, Lotus Notes, Microsoft Outlook и т. д.) открывает соединение со своим почтовым сервером по умолчанию. IP-адрес или доменное имя почтового сервера обычно настраиваются при установке почтового клиента.
- Почтовый сервер всегда будет передавать первое сообщение, чтобы идентифицировать себя.
- Клиент отправит команду SMTP HELO, на которую сервер ответит сообщением 250 OK.
- В зависимости от того, проверяет ли клиент почту, отправляет почту и т. д., соответствующие SMTP-команды будут отправлены на сервер, который ответит соответствующим образом.
- Эта транзакция запроса/ответа будет продолжаться до тех пор, пока клиент не отправит SMTP-команду QUIT. Затем сервер попрощается, и соединение будет закрыто.
- Когда уровень TCP получает данные протокола прикладного уровня сверху, он сегментирует их на управляемые «фрагменты», а затем добавляет к каждому «фрагменту» заголовок TCP с определенной информацией TCP. Информация, содержащаяся в заголовке TCP, включает номер порта приложения, которому необходимо отправить данные.
- Когда уровень TCP получает пакет от нижележащего уровня IP, уровень TCP удаляет данные заголовка TCP из пакета, при необходимости выполняет некоторую реконструкцию данных, а затем отправляет данные нужному приложению, используя номер порта. из заголовка TCP.
- Что является корнем слова компьютер
- Игра не может быть запущена, так как файл ниже поврежден sims 4
- Как продлить электронную подпись в Сбербанке
- Что такое графический контроллер в ноутбуке
- Код ошибки 2 dr web при обновлении
Это действительно происходит!
Ким осторожно подошла к Фреду. Как менеджер по безопасности, она знала, как важно полностью собрать информацию, прежде чем делать поспешные выводы. «Фред, мой просмотр наших компьютерных журналов показывает, что вы входили в систему и просматривали конфиденциальную информацию об учениках. Я не мог понять, почему кому-то из службы общественного питания нужно просматривать результаты тестов отдельных учеников, поэтому я подумал, что я зайди и спроси."
Фред посмотрел на Ким так, словно был удивлен, что задал такой вопрос. "Вы забыли, что у меня есть доступ к студенческим записям?"
"У вас есть доступ к определенным элементам, связанным с правом учащегося на бесплатные и льготные обеды", – пояснила Ким. "Это предел вашей потребности знать."
"Я не знал, что мой доступ ограничен", – честно заявил Фред. "Я решил, что если мой пароль приведет меня к файлу, это будет честная игра."
Ким сделал паузу, поняв, что для Фреда могло быть разумным предположить, что ему разрешено читать файл, если его пароль дает ему доступ. «Хм, я понимаю вашу точку зрения, Фред, но, по правде говоря, вы не должны получать доступ к информации об успеваемости, которая не связана с вашими законными образовательными обязанностями. На этот раз я не буду придавать этому большого значения, но от а теперь ограничьте просмотр информацией о бесплатных обедах и обедах по сниженным ценам. А пока я собираюсь разослать персоналу записку, напоминающую им, что на самом деле означает необходимость знать."
Несомненно, организация имеет право защищать свои вычислительные и информационные ресурсы с помощью действий по обеспечению безопасности доступа пользователей, однако пользователи ( независимо от того, авторизованы они или нет) также имеют права. Необходимо приложить разумные усилия, чтобы информировать всех пользователей, даже незваных хакеров, о том, что система находится под наблюдением и что несанкционированная деятельность будет наказана и/или преследована в судебном порядке, если это будет сочтено целесообразным. Если такие усилия не будут предприняты, организация может фактически нарушать права на неприкосновенность частной жизни своих злоумышленников!
В. Можно ли иметь безопасную систему, если у вас есть сотрудники, которые работают удаленно или работают по нестандартному графику?
A. да. Хотя определенные контрмеры могут потребоваться скорректировать для соответствия нетрадиционным графикам (например, практика ограничения пользователей допустимым временем и местоположением входа в систему), система с удаленными сотрудниками, частыми путешественниками и другими пользователями удаленного доступа все еще может быть безопасной. Это может потребовать от разработчиков политики более творческого мышления, но каждое руководство по безопасности в любом случае должно быть адаптировано для удовлетворения потребностей организации (см. главу 2).
В. Является ли использование паролей эффективной стратегией защиты системы?
A. Тот факт, что системы паролей являются наиболее распространенной стратегией аутентификации, применяемой в настоящее время, не означает, что они стали менее эффективными. На самом деле причина их популярности именно в том, что они могут быть очень полезны для ограничения доступа к системе. Главной проблемой систем паролей является не их техническая целостность, а степень, в которой (как и многие стратегии) они зависят от надлежащего применения пользователями. Хотя, безусловно, существуют более дорогие и даже эффективные способы ограничения доступа пользователей, если анализ рисков определяет, что система паролей отвечает потребностям организации и является наиболее рентабельной, вы можете быть уверены в защите паролей, пока пользователи правильно внедряют систему. -что, в свою очередь, требует соответствующей подготовки персонала (см. главу 10).
Инициирование процедур безопасности также приносит пользу пользователям:
1) помогает им защитить свои собственные файлы
2) снижает вероятность неправомерного раскрытия конфиденциальной информации
p>3) Информировать их о том, что считается и что не считается приемлемым поведением
-
Намеренные действия (например, совместное использование учетных записей пользователей, взлом, спуфинг пользователей или выдача себя за других)
-
Ограничьте доступ пользователей только к тем файлам, которые им необходимы для работы. Предоставление ненужного доступа значительно увеличивает риск без соответствующего увеличения выгоды. Зачем беспокоиться?
-
Выберите систему аутентификации. Правильный выбор системы аутентификации зависит от потребностей организации и ее системы и должен основываться на результатах оценки рисков (см. главу 2). Обратите внимание, что следующие варианты переходят от наименее безопасных к наиболее безопасным, а также (что неудивительно) от наименее дорогих к наиболее дорогим:
-
Что-то известное пользователю (например, пароль — см. ниже)
Поскольку пароли являются наиболее распространенным методом аутентификации пользователей, они заслуживают особого внимания.
-
Требовать, чтобы пароль состоял не менее чем из шести символов (хотя предпочтительнее от восьми до десяти). использование паролей, которые представляют собой слова, имена, даты или другие обычно ожидаемые форматы. использование паролей, которые отражают или идентифицируют владельца учетной записи (например, без дат рождения, инициалов или имен домашних животных). сочетание символов (например, буквы/цифры и верхний/нижний регистр, если система чувствительна к регистру).
-
системному администратору изменить все предустановленные пароли, встроенные в программное обеспечение (например, супервизора, демо и root). требовать смены паролей через заданные промежутки времени (например, раз в месяц). нулевая терпимость к обмену паролями. незащищенное хранение личных паролей (например, их нельзя записывать на стикерах Post-It™ и приклеивать скотчем сбоку монитора). отправить пароль в составе сообщения электронной почты. пользователям не вводить свой пароль, когда кто-то может наблюдать. (или иным образом неясным) отображение пароля на мониторе, когда пользователи вводят его. пользователи, что легко изменить пароль, если они думают, что их пароль мог быть скомпрометирован. зашифрованную историю паролей, чтобы убедиться, что пользователи не просто используют старые пароли, когда они должны их менять. рабочем месте, чтобы убедиться, что все правила соблюдаются.
Это действительно происходит!
Директор Маллинз был сторонником правил, но он также серьезно относился к выполнению работы. Когда через две недели после начала занятий он узнал, что ни один из трех его новых учителей еще не получил учетные записи в компьютерной сети из центрального офиса, он пришел в ярость. У них было достаточно поводов для беспокойства, и им не мешало оставаться в автономном режиме. Он позвал своего помощника: «Меня не волнует, запрещает политика безопасности совместное использование паролей или нет, этим людям нужно войти в систему. Пусть они используют мой пароль для входа — это «A4a6dc», понятно? что у них есть доступ ко всему, что им нужно для работы!"
Прошло три недели, прежде чем системный администратор отправил письмо директору Маллинзу по электронной почте о явном неправильном использовании его пароля: «Системные журналы почти ежедневно показывают случаи, когда несколько человек одновременно пытаются войти в систему с вашим паролем. Пожалуйста, немедленно измените пароль и дайте мне знать, если у вас есть какие-либо идеи о том, кто его использует не по назначению."
Не забудьте настроить контрмеры в соответствии с потребностями организации и пользователей.
Некоторые злоумышленники используют «словари паролей», которые в буквальном смысле пытаются сопоставлять пароли по одному слову в течение тысяч и тысяч попыток!
-
Ограничьте пользователям допустимое время входа в систему: у среднего сотрудника дневной смены нет причин получать доступ к системе посреди ночи.
Как работает Интернет?
С чего начать? Интернет-адреса
Поскольку Интернет представляет собой глобальную сеть компьютеров, каждый компьютер, подключенный к Интернету, должен иметь уникальный адрес. Интернет-адреса имеют вид nnn.nnn.nnn.nnn, где nnn должно быть числом от 0 до 255. Этот адрес известен как IP-адрес. (IP означает Интернет-протокол; подробнее об этом позже.)
На рисунке ниже показаны два компьютера, подключенных к Интернету. ваш компьютер с IP-адресом 1.2.3.4 и другой компьютер с IP-адресом 5.6.7.8. Интернет представлен как абстрактный объект между ними. (По мере продвижения этой статьи Интернет-часть Диаграммы 1 будет объясняться и перерисовываться несколько раз по мере раскрытия деталей Интернета.)
Диаграмма 1 |
Если вы подключаетесь к Интернету через интернет-службу Провайдер (ISP), вам обычно назначается временный IP-адрес на время вашего сеанса телефонного подключения. Если вы подключаетесь к Интернету из локальной сети (LAN), ваш компьютер может иметь постоянный IP-адрес или может получить временный IP-адрес от сервера DHCP (протокол динамической конфигурации хоста). В любом случае, если вы подключены к Интернету, ваш компьютер имеет уникальный IP-адрес.
Стеки и пакеты протоколов
Уровень протокола | Комментарии |
---|---|
Приложение Уровень протоколов | Протоколы, характерные для таких приложений, как WWW, электронная почта, FTP и т. д. |
Уровень протокола управления передачей | TCP направляет пакеты определенному приложению на компьютере, используя номер порта. |
Уровень протокола Интернета | IP направляет пакеты на определенный компьютер, используя IP-адрес . |
Аппаратный уровень | Преобразует двоичные пакетные данные в сетевые сигналы и обратно. (Например, сетевая карта Ethernet, модем для телефонных линий и т. д. .) |
Если бы мы пошли по пути, то сообщение "Привет, компьютер 5.6.7.8!" брал с нашего компа на комп с IP адресом 5.6.7.8, получилось бы примерно так:
<ПР>Сетевая инфраструктура
Теперь вы знаете, как пакеты передаются с одного компьютера на другой через Интернет. Но что между ними? Из чего на самом деле состоит Интернет? Давайте посмотрим на другую диаграмму:
Диаграмма 3 |
Здесь мы видим диаграмму 1, перерисованную с большей детализацией. Физическое подключение через телефонную сеть к интернет-провайдеру было легко догадаться, но помимо этого могло быть какое-то объяснение.
У поставщика услуг Интернета есть пул модемов для своих клиентов с коммутируемым доступом. Это управляется каким-либо компьютером (обычно выделенным), который управляет потоком данных от модемного пула к магистральному или выделенному маршрутизатору. Эту настройку можно назвать сервером портов, поскольку она «обслуживает» доступ к сети. Здесь также обычно собирается информация об оплате и использовании.
После того как ваши пакеты проходят через телефонную сеть и локальное оборудование вашего интернет-провайдера, они перенаправляются на магистральную сеть интернет-провайдера или на магистральную сеть, у которой интернет-провайдер покупает пропускную способность. Отсюда пакеты обычно проходят через несколько маршрутизаторов и несколько магистралей, выделенных линий и других сетей, пока не найдут пункт назначения — компьютер с адресом 5.6.7.8. Но было бы неплохо, если бы мы знали точный маршрут, по которому наши пакеты проходят через Интернет? Как оказалось, способ есть.
Интернет-инфраструктура
Магистральная сеть Интернета состоит из множества крупных сетей, которые соединяются друг с другом. Эти крупные сети известны как поставщики сетевых услуг или NSP. Одними из крупных NSP являются UUNet, CerfNet, IBM, BBN Planet, SprintNet, PSINet и другие. Эти сети взаимодействуют друг с другом для обмена пакетным трафиком. Каждый NSP должен подключаться к трем точкам доступа к сети или NAP. В точках NAP пакетный трафик может переходить из одной магистрали NSP в магистральную сеть другого NSP. NSP также соединяются на городских биржах или MAE. MAE служат той же цели, что и NAP, но находятся в частной собственности.NAP были первоначальными точками подключения к Интернету. И NAP, и MAE называются точками обмена интернет-трафиком или IX. NSP также продают полосу пропускания более мелким сетям, таким как интернет-провайдеры и более мелкие поставщики полосы пропускания. На рисунке ниже показана эта иерархическая инфраструктура.
Диаграмма 4 |
Это не точное представление реального фрагмента Интернета. Диаграмма 4 предназначена только для демонстрации того, как поставщики сетевых услуг могут взаимодействовать друг с другом и более мелкими интернет-провайдерами. Ни один из компонентов физической сети не показан на диаграмме 4 так, как на диаграмме 3. Это связано с тем, что магистральная инфраструктура отдельного NSP сама по себе представляет собой сложный рисунок. Большинство поставщиков сетевых услуг публикуют карты своей сетевой инфраструктуры на своих веб-сайтах, и их легко найти. Нарисовать реальную карту Интернета было бы почти невозможно из-за его размера, сложности и постоянно меняющейся структуры.
Иерархия интернет-маршрутизации
Как же пакеты попадают в Интернет? Каждый ли компьютер, подключенный к Интернету, знает, где находятся другие компьютеры? Пакеты просто «рассылаются» на каждый компьютер в Интернете? Ответ на оба предыдущих вопроса — «нет». Ни один компьютер не знает, где находятся другие компьютеры, и пакеты не отправляются каждому компьютеру. Информация, используемая для доставки пакетов к месту назначения, содержится в таблицах маршрутизации, хранящихся на каждом маршрутизаторе, подключенном к Интернету.
Маршрутизаторы — это коммутаторы пакетов. Маршрутизатор обычно подключается между сетями для маршрутизации пакетов между ними. Каждый маршрутизатор знает о своих подсетях и используемых ими IP-адресах. Маршрутизатор обычно не знает, какие IP-адреса находятся «над ним». Изучите диаграмму 5 ниже. Черные ящики, соединяющие магистрали, — это маршрутизаторы. Более крупные магистрали NSP наверху подключаются к NAP. Под ними несколько подсетей, а под ними еще подсетей. Внизу две локальные сети с подключенными компьютерами.
Диаграмма 5 |
Когда пакет поступает на маршрутизатор, маршрутизатор проверяет IP-адрес, помещенный туда уровнем протокола IP на исходном компьютере. Маршрутизатор проверяет свою таблицу маршрутизации. Если сеть, содержащая IP-адрес, найдена, пакет отправляется в эту сеть. Если сеть, содержащая IP-адрес, не найдена, маршрутизатор отправляет пакет по маршруту по умолчанию, обычно вверх по магистральной иерархии к следующему маршрутизатору. Будем надеяться, что следующий маршрутизатор будет знать, куда отправить пакет. Если это не так, пакет снова направляется вверх, пока не достигнет магистрали NSP. Маршрутизаторы, подключенные к магистралям NSP, содержат самые большие таблицы маршрутизации, и здесь пакет будет перенаправлен на правильную магистраль, где он начнет свое путешествие «вниз» через все более и более мелкие сети, пока не найдет пункт назначения.
Доменные имена и разрешение адресов
Многие компьютеры, подключенные к Интернету, содержат часть базы данных DNS и программное обеспечение, позволяющее другим пользователям получать к ней доступ. Эти компьютеры называются DNS-серверами. Ни один DNS-сервер не содержит всю базу данных; они содержат только его подмножество. Если DNS-сервер не содержит доменного имени, запрошенного другим компьютером, DNS-сервер перенаправляет запрашивающий компьютер на другой DNS-сервер.
Диаграмма 6 |
Служба доменных имен имеет иерархическую структуру, аналогичную к иерархии IP-маршрутизации. Компьютер, запрашивающий разрешение имени, будет перенаправлен «вверх» по иерархии до тех пор, пока не будет найден DNS-сервер, способный разрешить доменное имя в запросе. На рис. 6 показана часть иерархии. В верхней части дерева находятся корни доменов. Некоторые из старых, более распространенных доменов видны вверху. Что не показано, так это множество DNS-серверов по всему миру, которые формируют остальную часть иерархии.
При настройке подключения к Интернету (например, для локальной сети или удаленного доступа к сети в Windows) в процессе установки обычно указываются один первичный и один или несколько вторичных DNS-серверов. Таким образом, любые интернет-приложения, которым требуется разрешение доменных имен, смогут работать правильно. Например, когда вы вводите веб-адрес в свой веб-браузер, браузер сначала подключается к вашему основному DNS-серверу. После получения IP-адреса для введенного вами доменного имени браузер подключается к целевому компьютеру и запрашивает нужную веб-страницу.
Если вы используете удаленный доступ к сети:
Откройте окно удаленного доступа к сети (которое можно найти в проводнике Windows под дисководом компакт-дисков и над сетевым окружением). Щелкните правой кнопкой мыши свое подключение к Интернету и выберите «Свойства».Внизу окна свойств подключения нажмите Настройки TCP/IP. кнопка.
Если у вас есть постоянное подключение к Интернету:
щелкните правой кнопкой мыши Сетевое окружение и выберите Свойства. Щелкните Свойства TCP/IP. Выберите вкладку Конфигурация DNS вверху.
Теперь вы должны посмотреть на IP-адреса ваших DNS-серверов. Здесь вы можете отключить DNS или установить для своих DNS-серверов значение 0.0.0.0. (Сначала запишите IP-адреса ваших DNS-серверов. Возможно, вам также придется перезагрузить Windows.) Теперь введите адрес в веб-браузере. Браузер не сможет разрешить доменное имя, и вы, вероятно, получите неприятное диалоговое окно, объясняющее, что DNS-сервер не найден. Однако, если вы введете соответствующий IP-адрес вместо имени домена, браузер сможет получить нужную веб-страницу. (Используйте ping для получения IP-адреса перед отключением DNS.) Другие операционные системы Microsoft аналогичны.
Пересмотр интернет-протоколов
Как упоминалось ранее в разделе о стеках протоколов, можно предположить, что в Интернете используется множество протоколов. Это верно; существует множество коммуникационных протоколов, необходимых для работы Интернета. К ним относятся протоколы TCP и IP, протоколы маршрутизации, протоколы управления доступом к среде, протоколы прикладного уровня и т. д. В следующих разделах описаны некоторые из наиболее важных и часто используемых протоколов в Интернете. Сначала обсуждаются протоколы более высокого уровня, а затем протоколы более низкого уровня.
Когда вы вводите URL-адрес в веб-браузере, происходит следующее:
Протоколы приложений: SMTP и электронная почта
Когда вы открываете почтовый клиент для чтения электронной почты, обычно происходит следующее:
<ПР>Протокол управления передачей
Под прикладным уровнем в стеке протоколов находится уровень TCP. Когда приложения открывают соединение с другим компьютером в Интернете, отправляемые ими сообщения (используя определенный протокол прикладного уровня) передаются по стеку на уровень TCP. TCP отвечает за маршрутизацию протоколов приложений к правильному приложению на целевом компьютере. Для этого используются номера портов. Порты можно рассматривать как отдельные каналы на каждом компьютере. Например, вы можете просматривать веб-страницы, читая электронную почту. Это связано с тем, что эти два приложения (веб-браузер и почтовый клиент) использовали разные номера портов. Когда пакет поступает на компьютер и продвигается вверх по стеку протоколов, уровень TCP решает, какое приложение получит пакет, основываясь на номере порта.
TCP работает следующим образом:
<УЛ>TCP не является текстовым протоколом. TCP — это ориентированная на соединение, надежная служба потока байтов. Ориентированность на соединение означает, что два приложения, использующие TCP, должны сначала установить соединение перед обменом данными. TCP надежен, потому что для каждого полученного пакета отправителю отправляется подтверждение доставки. TCP также включает в свой заголовок контрольную сумму для проверки полученных данных на наличие ошибок. Заголовок TCP выглядит следующим образом:
Диаграмма 7 |
Обратите внимание, что здесь нет места для IP-адреса в заголовке TCP. Это потому, что TCP ничего не знает об IP-адресах. Задача TCP заключается в надежной передаче данных уровня приложения от приложения к приложению. Задача передачи данных от компьютера к компьютеру — это работа IP.
Интернет-протокол
В отличие от TCP, IP является ненадежным протоколом без установления соединения. IP не важно, дойдет ли пакет до адресата или нет. IP также не знает о соединениях и номерах портов. Работа IP также заключается в отправке и маршрутизации пакетов на другие компьютеры. IP-пакеты являются независимыми объектами и могут поступать не по порядку или вообще не поступать. Задача TCP состоит в том, чтобы убедиться, что пакеты прибывают и находятся в правильном порядке. Единственное, что у IP общего с TCP, — это то, как он получает данные и добавляет свою собственную информацию заголовка IP к данным TCP. Заголовок IP выглядит следующим образом:
Диаграмма 8 |
Выше мы видим IP-адреса отправителя и принимающие компьютеры в заголовке IP. Ниже показано, как выглядит пакет после прохождения через прикладной уровень, уровень TCP и уровень IP. Данные прикладного уровня сегментируются на уровне TCP, добавляется заголовок TCP, пакет передается на уровень IP, добавляется заголовок IP, а затем пакет передается через Интернет.
Подведение итогов
Теперь вы знаете, как работает Интернет. Но как долго он будет оставаться таким? Версия IP, используемая в настоящее время в Интернете (версия 4), позволяет использовать только 232 адреса. В конце концов свободных IP-адресов не останется. Удивлен? Не волнуйтесь. IP версии 6 прямо сейчас тестируется на исследовательской базе консорциумом исследовательских институтов и корпораций. И после этого? Кто знает. Интернет прошел долгий путь с момента его создания в качестве исследовательского проекта министерства обороны. Никто на самом деле не знает, чем станет Интернет. Однако одно можно сказать наверняка. Интернет объединит мир, как никакой другой механизм. Информационная эра в самом разгаре, и я рад быть ее частью.
Рус Шулер, 1998 г.
Обновления 2002 г.
Ресурсы
Ниже приведены некоторые интересные ссылки, связанные с некоторыми обсуждаемыми темами. (Надеюсь, они все еще работают. Все открываются в новом окне.)
Библиография
Следующие книги являются отличным источником информации и очень помогли в написании этой статьи. Я считаю, что книга Стивенса является лучшим справочником по TCP/IP и может считаться библией Интернета. Книга Шелдона охватывает гораздо более широкий круг вопросов и содержит огромное количество информации о сетях.
Читайте также: