Какому устройству памяти принадлежит cmos ram

Обновлено: 04.07.2024

Базовая система ввода/вывода компьютера (BIOS) – это программа, хранящаяся в энергонезависимой памяти, такой как постоянное запоминающее устройство (ПЗУ) или флэш-память, что делает ее микропрограммой. BIOS (иногда называемый ROM BIOS) всегда является первой программой, которая запускается при включении компьютера.

Вот что происходит в процессе загрузки (см. шаги на схеме ниже):

Питание включено.

ЦП передает управление BIOS.

В BIOS запускается программа Power-On Self Test, которая определяет объем памяти компьютера, а затем подтверждает правильность работы критически важного аппаратного обеспечения низкого уровня. О любых ошибках сообщает последовательность звуковых сигналов. После этого BIOS отключает все настраиваемые устройства.

BIOS идентифицирует все периферийные устройства компьютера, такие как жесткие диски и карты расширения. Сначала он ищет устройства plug-and-play и присваивает каждому номер, но в данный момент не включает устройства.

BIOS находит первичное загрузочное устройство или устройство начальной загрузки программы (IPL). Обычно это запоминающее устройство, такое как жесткий диск, дисковод для гибких дисков или компакт-диск, на котором находится операционная система, но это может быть и сетевая карта, подключенная к серверу. BIOS также находит все вторичные устройства IPL системы.

BIOS создает таблицу системных ресурсов, назначая бесконфликтные ресурсы в соответствии с тем, какие устройства он обнаружил, и данными конфигурации, хранящимися в энергонезависимой оперативной памяти.

Он выбирает и включает первичные устройства ввода (клавиатура) и устройства вывода (монитор), чтобы в случае возникновения проблем в процессе загрузки BIOS мог отобразить экран восстановления и позволить пользователю выбрать сохраненную конфигурацию системных настроек, которая известно, что они работают. BIOS зафиксировала эти настройки при последней успешной загрузке компьютера и сохранила их в энергонезависимой оперативной памяти.

Он сканирует устройства, не поддерживающие стандарт plug-and-play, в том числе шину PCI, и добавляет данные из их ПЗУ в свою таблицу ресурсов.

BIOS разрешает конфликты устройств и настраивает выбранное загрузочное устройство.

Он включает устройства plug-and-play, вызывая их дополнительные ПЗУ с соответствующими параметрами.

Запускает загрузчик начальной загрузки. Если по какой-либо причине IPL по умолчанию не загружает операционную систему, BIOS пытается использовать следующее устройство IPL в списке.

Устройство IPL загружает операционную систему в память.

BIOS также содержит программу установки, с помощью которой пользователь может настраивать аппаратные параметры, такие как пароли компьютера, время и дата. Поскольку BIOS настраивает основное устройство ввода и вывода во время процесса загрузки, пользователь может запустить программу установки и настроить параметры устройства, возможно, даже выбрав другое устройство IPL, например второй жесткий диск, если компьютер не загружается.< /p>

Основное изменение в функциях BIOS ПК произошло в 1995 году с появлением Windows 95. В новой операционной системе реализована функция plug-and-play, которая не только упростила работу по добавлению плат расширения, но и помогла определить согласованный механизм. чтобы BIOS распознавал и конфигурировал устройства в системе.

Ранние системы предполагали, что устройству всегда требуются одни и те же ресурсы — например, номер прерывания контроллера диска и диапазон адресов ввода-вывода. Считалось, что они никогда не изменятся или что они по своей природе статичны и поэтому их нужно назначать только один раз.

Однако технология plug-and-play дает BIOS свободу изменять номер прерывания и адреса ввода-вывода, используемые контроллером диска, чтобы избежать конфликтов ресурсов.

Благодаря универсальной последовательной шине и соединениям IEEE 1394 устройства можно подключать в горячем режиме. Другими словами, они могут появиться или исчезнуть без предупреждения.

Это означает, что BIOS должен хранить информацию о системных ресурсах для каждого устройства, о котором система когда-либо знала, и делать это динамически, чтобы системные ресурсы, такие как номер прерывания, диапазон адресов или идентификатор устройства, могли быть переназначены без требуется перезагрузка.

26_Bios.jpg

Чтобы просмотреть PDF-версию этой диаграммы, щелкните изображение выше.

Эксклюзив только для Computerworld Online

Обновление BIOS

Когда в компьютер необходимо установить новое оборудование, например жесткий диск большего объема, больший объем памяти или новую видеокарту, часто обнаруживается, что BIOS компьютера не поддерживает все возможности нового оборудования. Возможно, самое яркое свидетельство этого произошло, когда размер жестких дисков превысил 4 ГБ, а затем 8 ГБ. В то время вполне можно было установить, скажем, винчестер на 12 ГБ, а потом обнаружить, что компьютер может использовать только первые 8 ГБ.

Решение проблемы заключается в обновлении микросхемы BIOS.Системы большинства компьютеров, выпущенных в последние годы, можно обновить с помощью программы флэш-памяти, которая устанавливает новые инструкции и возможности. Обычно информация и файлы, необходимые для этого, доступны на веб-сайте производителя компьютера или материнской платы.

К сожалению, очень важно понимать, насколько радикальным шагом может быть обновление BIOS. Прежде чем вы это сделаете, рекомендуется сделать резервную копию всех данных с жесткого диска. Кроме того, посмотрите, есть ли перемычка восстановления, которая позволит вам восстановить исходный BIOS. Хотя обновление BIOS обычно проходит без проблем, процесс может повредить или разрушить микросхему BIOS, что сделает компьютер непригодным для использования.

Основное хранилище или память – это место на жестком диске, которое кратковременно используется для работы. Обычно это происходит в чипе. Память состоит из четырех типов микросхем памяти RAM, ROM, CMOS и flash. RAM обозначает оперативную память, а ROM обозначает память только для чтения. Их также называют основной памятью компьютера.

Содержание

ОЗУ [ редактировать | изменить источник ]


Оперативная память – это тип микросхемы, используемой в основной памяти. Это также временное хранилище, содержащее программные инструкции и кратковременную рабочую память для процессора. Оперативную память можно увеличить на большинстве компьютеров с помощью расширяемых слотов памяти. видео барана

Основное хранилище [ редактировать | изменить источник ]

Основная память (ОЗУ) называется «основной», потому что это основная память, доступная ЦП. Он используется для хранения данных, которые используются в данный момент.

Оперативная память [ edit | изменить источник ]

Оперативная память или ОЗУ – это форма хранения данных, используемая в компьютерах. Взятые в виде интегральных схем, которые представляют первичное или временное хранилище, они позволяют осуществлять доступ к сохраненным данным в любом порядке, поэтому они называются случайными. Делая его случайным, а не последовательным, значительно увеличивает скорость работы компьютера, поскольку время не тратится впустую на переход к месту, где хранятся необходимые данные (как при резервном копировании на ленту). Произвольная_память

Изменчивый [ изменить | изменить источник ]

Volatile — это описательное слово для оперативной памяти, то есть кратковременной памяти. когда компьютер теряет питание, временное хранилище будет потеряно. Чтобы предотвратить потерю данных, их необходимо сохранить на жесткий диск или в постоянное хранилище, называемое ПЗУ (память только для чтения)[247].

Быстро [ редактировать | изменить источник ]

Оперативная память (в большинстве случаев) работает быстрее, чем жесткий диск, а в некоторых случаях быстрее, чем флэш-память (которая энергонезависима). Именно благодаря этой большей скорости он до сих пор используется в компьютерах. Компьютеры будут работать быстрее и эффективнее с большим объемом оперативной памяти. Рекомендуемый объем оперативной памяти для современных операционных систем, таких как Windows Vista/XP и OSX 10.5, для бесперебойной работы с весом общей графической памяти и программ составляет 1024 мегабайта (1 ГБ). В настоящее время оперативная память бывает 4 типов: DDR1, DDR2, DDR3, DDR4 и DDR5, доступная с 2020 года. В настоящее время чаще всего используется DDR2. DDR3 работает на более высокой частоте и имеет 3 канала передачи данных, что увеличивает пропускную способность. Недавно разработанные жесткие диски SSD в настоящее время способны соответствовать скорости передачи данных DDR и DDR2 и даже превосходить ее.

32-разрядная операционная система может использовать только 4 ГБ ОЗУ. Однако 64-разрядная операционная система способна поддерживать гораздо больше памяти. По сравнению с ПЗУ, ОЗУ дороже.

ПЗУ [ редактировать | изменить источник ]

ПЗУ (память только для чтения) относится к микросхеме памяти только для чтения, которая не может быть записана или стерта пользователем компьютера без специального оборудования. При использовании ПЗУ содержимое не теряется, когда питание компьютера больше не подается.


Поскольку он не требует питания и не может быть перезаписан, в ПЗУ помещаются только инструкции по запуску (загрузке).

КМОП [ редактировать | изменить источник ]

КМОП означает Комплементарный металл-оксид-полупроводник. Эта технология используется в микросхемах и аналоговых схемах.

Он не теряет свое содержимое при выключении, даже если содержимое не было сохранено. Также сохраняет актуальность времени и даты, даже когда компьютер выключен.

JavaScript отключен.
Включите JavaScript для просмотра этого контента.

Что такое запоминающее устройство?

5

Устройство для хранения данных

Компьютеры обрабатывают информацию, хранящуюся в их памяти, которая состоит из единиц хранения данных.Устройства хранения данных, такие как дисководы CD и DVD, называются внешними или вспомогательными запоминающими устройствами, тогда как основные запоминающие устройства, напрямую доступные с компьютеров, называются внутренними или основными запоминающими устройствами, которые основаны на полупроводниковых микросхемах памяти.
В основном существует два типа полупроводниковой памяти: оперативная память (ОЗУ) и постоянная память (ПЗУ). RAM — это домен временного хранения данных, тогда как ROM служит доменом полупостоянного хранения. Если оперативную память можно сравнить с ноутбуками или блокнотами, то ПЗУ можно сравнить со словарями и учебниками.

ОЗУ — запоминающее устройство для чтения/записи данных

Поскольку оперативная память (ОЗУ) в основном используется в качестве временного хранилища для операционной системы и приложений, не имеет большого значения, что некоторые типы ОЗУ теряют данные при отключении питания. Гораздо важнее стоимость и скорость чтения/записи. В основном существует два типа ОЗУ: один — DRAM (динамическая ОЗУ), а другой — SRAM (статическая ОЗУ). DRAM хранит информацию в конденсаторах, и, поскольку конденсаторы медленно разряжаются, информация исчезает, если заряд конденсатора периодически не обновляется. На практике данные в DRAM необходимо считывать и перезаписывать (т. е. обновлять) десятки раз в секунду. В отличие от этого, SRAM не нуждается в обновлении, поскольку для сохранения данных в ней используются триггерные схемы*. SRAM дороже DRAM из-за сложной схемы, но и быстрее.

* Триггерная схема: электронная схема, в которой хранится один бит данных, представляющий либо 0, либо 1.

ПЗУ — постоянное запоминающее устройство

Постоянная память (ПЗУ) используется для извлечения сохраненных данных, которые постоянно фиксируются и не могут быть перезаписаны. Многие бытовые приборы, такие как стиральные машины и рисоварки, используют устройства ПЗУ для хранения предварительно установленных программ.
ПЗУ является энергонезависимой памятью, что означает, что данные, хранящиеся в ПЗУ, не теряются даже при отключении питания. ПЗУ предназначено специально для чтения данных. Возможно стереть или записать данные в ПЗУ, но это занимает слишком много времени. Чтобы исправить этот недостаток, в последние годы появились новые типы устройств, представляющие собой нечто среднее между ПЗУ и ОЗУ, включая флэш-память и СППЗУ.


< /p>

Некоторые типы компьютерной памяти спроектированы так, чтобы быть очень быстрыми, а это означает, что центральный процессор (ЦП) может очень быстро получить доступ к хранящимся там данным. Другие типы спроектированы так, чтобы быть очень дешевыми, поэтому в них можно экономично хранить большие объемы данных.

Еще одна особенность компьютерной памяти заключается в том, что некоторые типы памяти являются энергонезависимыми, что означает, что они могут хранить данные в течение длительного времени даже при отсутствии питания. А некоторые типы являются изменчивыми, которые часто работают быстрее, но теряют все хранящиеся в них данные при отключении питания.

Компьютерная система создается с использованием комбинации этих типов компьютерной памяти, и точная конфигурация может быть оптимизирована для обеспечения максимальной скорости обработки данных или минимальной стоимости, или некоторого компромисса между ними.

Оглавление

Какие существуют типы компьютерной памяти?

Несмотря на то, что в компьютере существует много типов памяти, основное различие между основной памятью, часто называемой системной памятью, и вторичной памятью, которую чаще называют хранилищем.

Ключевое различие между первичной и вторичной памятью заключается в скорости доступа.

  • Основная память включает в себя ПЗУ и ОЗУ и расположена рядом с ЦП на материнской плате компьютера, что позволяет ЦП действительно очень быстро считывать данные из основной памяти. Он используется для хранения данных, которые необходимы ЦП в ближайшее время, чтобы ему не приходилось ждать их доставки.
  • Вторичная память, напротив, обычно физически расположена в отдельном устройстве хранения, таком как жесткий диск или твердотельный накопитель (SSD), который подключен к компьютерной системе либо напрямую, либо по сети. Стоимость гигабайта вторичной памяти намного ниже, но скорость чтения и записи значительно ниже.

память компьютера

За несколько периодов развития компьютеров было развернуто множество типов компьютерной памяти, каждый из которых имел свои сильные и слабые стороны.

Основные типы памяти: RAM и ROM

Существует два основных типа основной памяти:

Давайте подробно рассмотрим оба типа памяти.

1) ОЗУ Память компьютера

Акроним RAM связан с тем, что к данным, хранящимся в оперативной памяти, можно обращаться, как следует из названия, в любом произвольном порядке.Или, другими словами, к любому случайному биту данных можно получить доступ так же быстро, как и к любому другому биту.

Самое важное, что нужно знать об ОЗУ, это то, что ОЗУ работает очень быстро, в нее можно записывать и читать, она энергозависима (поэтому все данные, хранящиеся в ОЗУ, теряются при отключении питания) и, наконец, , это очень дорого по сравнению со всеми типами вторичной памяти по стоимости за гигабайт. Именно из-за относительно высокой стоимости оперативной памяти по сравнению с дополнительными типами памяти большинство компьютерных систем используют как основную, так и дополнительную память.

Данные, необходимые для предстоящей обработки, перемещаются в ОЗУ, где к ним можно получить доступ и изменить их очень быстро, чтобы ЦП не оставался в ожидании. Когда данные больше не требуются, они перемещаются в более медленную, но более дешевую вторичную память, а освободившееся место в ОЗУ заполняется следующим блоком данных, который будет использоваться.

Типы оперативной памяти

  • DRAM: DRAM расшифровывается как Dynamic RAM и является наиболее распространенным типом RAM, используемым в компьютерах. Самый старый тип известен как DRAM с одинарной скоростью передачи данных (SDR), но новые компьютеры используют более быструю DRAM с двойной скоростью передачи данных (DDR). DDR поставляется в нескольких версиях, включая DDR2, DDR3 и DDR4, которые обеспечивают лучшую производительность и более энергоэффективны, чем DDR. Однако разные версии несовместимы, поэтому невозможно смешивать DDR2 с DDR3 DRAM в компьютерной системе. DRAM состоит из транзистора и конденсатора в каждой ячейке.
  • SRAM: SRAM означает статическое ОЗУ. Это особый тип ОЗУ, который работает быстрее, чем DRAM, но дороже и объемнее, поскольку в каждой ячейке имеется шесть транзисторов. По этим причинам SRAM обычно используется только в качестве кэша данных внутри самого ЦП или в качестве ОЗУ в серверных системах очень высокого класса. Небольшой кэш SRAM для наиболее необходимых данных может привести к значительному повышению скорости работы системы.

Ключевое различие между DRAM и SRAM заключается в том, что SRAM быстрее, чем DRAM, возможно, в два-три раза быстрее, но дороже и громоздче. SRAM обычно доступен в мегабайтах, а DRAM приобретается в гигабайтах.

DRAM потребляет больше энергии, чем SRAM, поскольку ее необходимо постоянно обновлять для поддержания целостности данных, тогда как SRAM, хотя и энергозависимая, не требует постоянного обновления при включении.

2) ROM Память компьютера

ROM означает постоянную память, и это название связано с тем фактом, что, хотя данные могут быть прочитаны из компьютерной памяти этого типа, данные обычно не могут быть записаны в нее. Это очень быстрый тип компьютерной памяти, который обычно устанавливается рядом с процессором на материнской плате.

ПЗУ — это тип энергонезависимой памяти, что означает, что данные, хранящиеся в ПЗУ, сохраняются в памяти, даже когда на нее не подается питание, например, когда компьютер выключен. В этом смысле она похожа на вторичную память, которая используется для долговременного хранения.

Когда компьютер включен, ЦП может начать считывать информацию, хранящуюся в ПЗУ, без необходимости в драйверах или другом сложном программном обеспечении, помогающем ему взаимодействовать. ПЗУ обычно содержит «загрузочный код», который представляет собой базовый набор инструкций, которые компьютер должен выполнить, чтобы узнать об операционной системе, хранящейся во вторичной памяти, и загрузить части операционной системы в первичную память, чтобы он мог запуститься. и будьте готовы к использованию.

ПЗУ также используется в более простых электронных устройствах для хранения прошивки, которая запускается сразу после включения устройства.

Типы ПЗУ

ПЗУ доступно в нескольких различных типах, включая PROM, EPROM и EEPROM.

  • PROM PROM расшифровывается как Programmable Read-Only Memory и отличается от настоящего ROM тем, что в то время как ROM программируется (т.е. в него записываются данные) в процессе производства, PROM изготавливается в пустом состоянии, а затем запрограммированы позже с помощью программатора PROM или записи.
  • EPROM EPROM расшифровывается как Erasable Programmable Read-Only Memory, и, как следует из названия, данные, хранящиеся в EPROM, можно стереть, а EPROM перепрограммировать. Для стирания EPROM необходимо извлечь его из компьютера и подвергнуть воздействию ультрафиолетового света перед повторной записью.
  • EEPROM EEPROM расшифровывается как электрически стираемое программируемое постоянное запоминающее устройство, и различие между EPROM и EEPROM заключается в том, что последнее может быть стерто и записано компьютерной системой, в которой оно установлено. В этом смысле EEPROM строго не читается. Только. Однако во многих случаях процесс записи идет медленно, поэтому обычно это делается только для периодического обновления программного кода, такого как микропрограмма или код BIOS.

Как ни странно, флэш-память NAND (например, в USB-накопителях и твердотельных накопителях) является типом EEPROM, но флэш-память NAND считается вторичной памятью.

Вторичные типы памяти

Вторичная память включает множество различных носителей данных, которые можно напрямую подключить к компьютерной системе. К ним относятся:

Вторичная память также включает:

    включая флэш-массивы 3D NAND, подключенные к сети хранения данных (SAN)
  • Устройства хранения, которые могут быть подключены через обычную сеть (известную как сетевое хранилище или NAS).

Возможно, облачное хранилище также можно назвать вторичной памятью.

Различия между ОЗУ и ПЗУ

ПЗУ:

  • Энергонезависимая
  • Быстро читать
  • Обычно используется в небольших количествах.
  • Невозможно быстро записать
  • Используется для хранения инструкций по загрузке или прошивки.
  • Относительно высокая стоимость хранения одного мегабайта по сравнению с оперативной памятью.

ОЗУ:

  • Нестабильный
  • Быстро читать и писать
  • Используется в качестве системной памяти для хранения данных (включая программный код), которые ЦП должен немедленно обработать
  • Относительно дешевое значение в пересчете на мегабайт по сравнению с ПЗУ, но относительно дорогое по сравнению со вторичной памятью.

Какая технология находится между первичной и вторичной памятью?

За последний год или около того был разработан новый носитель памяти под названием 3D XPoint, характеристики которого находятся между первичной и вторичной памятью.

3D XPoint дороже, но быстрее, чем дополнительная память, и дешевле, но медленнее, чем оперативная память. Это также тип энергонезависимой памяти.

Эти характеристики означают, что ее можно использовать в качестве альтернативы ОЗУ в системах, которым требуется огромный объем системной памяти, создание которой с использованием ОЗУ было бы слишком дорогостоящим (например, в системах с базами данных в оперативной памяти). Компромисс заключается в том, что такие системы не получают полного прироста производительности за счет использования оперативной памяти.

Поскольку 3D XPoint является энергонезависимым, системы, использующие 3D XPoint в качестве системной памяти, могут быть запущены и снова запущены после сбоя питания или другого прерывания очень быстро, без необходимости считывания всех данных обратно в системную память из вторичная память.

Читайте также: