Какой тип локальной сети установлен в вашем компьютерном классе, какие функции он выполняет

Обновлено: 04.07.2024

Эта статья предназначена для общего ознакомления с концепциями сетей и подсетей Интернет-протокола (IP). В конце статьи есть глоссарий.

Относится к: Windows 10 — все выпуски
Исходный номер базы знаний: 164015

Обзор

  • IP-адрес
  • Маска подсети
  • Шлюз по умолчанию

Чтобы правильно настроить TCP/IP, необходимо понимать, как сети TCP/IP адресуются и делятся на сети и подсети.

Успех TCP/IP как сетевого протокола Интернета во многом обусловлен его способностью соединять вместе сети разных размеров и системы разных типов. Эти сети произвольно делятся на три основных класса (наряду с несколькими другими), которые имеют предопределенные размеры. Каждая из них может быть разделена системными администраторами на более мелкие подсети. Маска подсети используется для разделения IP-адреса на две части. Одна часть идентифицирует хост (компьютер), другая часть идентифицирует сеть, к которой он принадлежит. Чтобы лучше понять, как работают IP-адреса и маски подсети, посмотрите на IP-адрес и посмотрите, как он организован.

IP-адреса: сети и хосты

IP-адрес — это 32-битное число. Он однозначно идентифицирует узел (компьютер или другое устройство, например принтер или маршрутизатор) в сети TCP/IP.

IP-адреса обычно выражаются в десятичном формате с точками, состоящем из четырех чисел, разделенных точками, например 192.168.123.132. Чтобы понять, как маски подсети используются для различения хостов, сетей и подсетей, изучите IP-адрес в двоичной записи.

Например, десятичный IP-адрес с точками 192.168.123.132 представляет собой (в двоичном представлении) 32-битное число 110000000101000111101110000100. Это число может быть трудно понять, поэтому разделите его на четыре части по восемь двоичных цифр.< /p>

Чтобы глобальная сеть TCP/IP (WAN) работала эффективно как совокупность сетей, маршрутизаторы, которые передают пакеты данных между сетями, не знают точного местоположения хоста, которому предназначен пакет информации. . Маршрутизаторы знают только, членом какой сети является хост, и используют информацию, хранящуюся в их таблице маршрутизации, чтобы определить, как доставить пакет в сеть хоста назначения. После того, как пакет доставлен в сеть назначения, пакет доставляется на соответствующий хост.

Чтобы этот процесс работал, IP-адрес состоит из двух частей. Первая часть IP-адреса используется как сетевой адрес, а последняя часть — как адрес хоста. Если вы возьмете пример 192.168.123.132 и разделите его на эти две части, вы получите 192.168.123. Сеть .132 Host или 192.168.123.0 — сетевой адрес. 0.0.0.132 - адрес хоста.

Маска подсети

Второй элемент, необходимый для работы TCP/IP, — это маска подсети. Маска подсети используется протоколом TCP/IP для определения того, находится ли узел в локальной подсети или в удаленной сети.

В TCP/IP части IP-адреса, которые используются в качестве адресов сети и хоста, не являются фиксированными. Если у вас нет дополнительной информации, указанные выше адреса сети и хоста определить невозможно. Эта информация предоставляется в другом 32-битном числе, называемом маской подсети. Маска подсети в этом примере — 255.255.255.0. Неясно, что означает это число, если только вы не знаете, что 255 в двоичном представлении равно 11111111. Итак, маска подсети 11111111.11111111.11111111.00000000.

Соединяя IP-адрес и маску подсети вместе, сетевую и узловую части адреса можно разделить:

11000000.10101000.01111011.10000100 - IP-адрес (192.168.123.132)
11111111.11111111.11111111.00000000 - Маска подсети (255.255.255.0)

Первые 24 бита (количество единиц в маске подсети) идентифицируются как сетевой адрес. Последние 8 бит (количество оставшихся нулей в маске подсети) идентифицируются как адрес хоста. Он дает вам следующие адреса:

11000000.10101000.01111011.00000000 – сетевой адрес (192.168.123.0)
00000000.00000000.00000000.10000100 – адрес хоста (000.000.000.132)

Итак, теперь вы знаете, что для этого примера с маской подсети 255.255.255.0 идентификатор сети равен 192.168.123.0, а адрес хоста — 0.0.0.132. Когда пакет поступает в подсеть 192.168.123.0 (из локальной подсети или удаленной сети) и имеет адрес назначения 192.168.123.132, ваш компьютер получит его из сети и обработает.

< td>1111111.11111111.1111111.11000000
Десятичный Двоичный
255.255.255.192
255.255.255.224 1111111.11111111.1111111.11100000
р>

Internet RFC 1878 (доступен в разделе InterNIC-Public Information Counting Internet Domain Name Registration Services) описывает допустимые подсети и маски подсетей, которые можно использовать в сетях TCP/IP.

Сетевые классы

Интернет-адреса выделяются InterNIC, организацией, управляющей Интернетом. Эти IP-адреса делятся на классы. Наиболее распространенными из них являются классы A, B и C. Классы D и E существуют, но не используются конечными пользователями. Каждый из классов адресов имеет свою маску подсети по умолчанию. Вы можете определить класс IP-адреса, взглянув на его первый октет. Ниже приведены диапазоны интернет-адресов классов A, B и C, для каждого из которых приведен пример адреса:

Сети класса A используют маску подсети по умолчанию 255.0.0.0 и имеют 0–127 в качестве первого октета. Адрес 10.52.36.11 является адресом класса А. Его первый октет — 10, то есть от 1 до 126 включительно.

Сети класса C используют маску подсети по умолчанию 255.255.255.0 и имеют 192–223 в качестве первого октета. Адрес 192.168.123.132 является адресом класса C. Его первый октет — 192, то есть от 192 до 223 включительно.

В некоторых сценариях значения маски подсети по умолчанию не соответствуют потребностям организации по одной из следующих причин:

  • Физическая топология сети
  • Количество сетей (или хостов) не соответствует ограничениям маски подсети по умолчанию.

В следующем разделе объясняется, как можно разделить сети с помощью масок подсети.

Подсети

Сеть класса A, B или C TCP/IP может быть дополнительно разделена или разделена на подсети системным администратором. Это становится необходимым, когда вы согласовываете логическую адресную схему Интернета (абстрактный мир IP-адресов и подсетей) с физическими сетями, используемыми в реальном мире.

Системный администратор, которому выделен блок IP-адресов, может управлять сетями, организованными не так, чтобы эти адреса легко помещались. Например, у вас есть глобальная сеть со 150 хостами в трех сетях (в разных городах), которые соединены маршрутизатором TCP/IP. Каждая из этих трех сетей имеет 50 хостов. Вам выделена сеть класса C 192.168.123.0. (Например, этот адрес на самом деле находится в диапазоне, не выделенном в Интернете.) Это означает, что вы можете использовать адреса от 192.168.123.1 до 192.168.123.254 для ваших 150 хостов.

В вашем примере нельзя использовать два адреса: 192.168.123.0 и 192.168.123.255, так как двоичные адреса с частью узла, состоящей из единиц и всех нулей, недействительны. Нулевой адрес недействителен, поскольку он используется для указания сети без указания хоста. Адрес 255 (в двоичном представлении адрес узла из всех единиц) используется для передачи сообщения каждому узлу в сети. Просто помните, что первый и последний адрес в любой сети или подсети не могут быть назначены какому-либо отдельному хосту.

Теперь вы должны иметь возможность назначать IP-адреса 254 хостам. Он отлично работает, если все 150 компьютеров находятся в одной сети. Однако ваши 150 компьютеров находятся в трех отдельных физических сетях. Вместо того чтобы запрашивать дополнительные блоки адресов для каждой сети, вы делите свою сеть на подсети, что позволяет использовать один блок адресов в нескольких физических сетях.

В этом случае вы разделяете свою сеть на четыре подсети, используя маску подсети, которая увеличивает сетевой адрес и уменьшает возможный диапазон адресов узлов. Другими словами, вы «заимствуете» некоторые биты, используемые для адреса хоста, и используете их для сетевой части адреса. Маска подсети 255.255.255.192 дает вам четыре сети по 62 хоста в каждой. Это работает, потому что в двоичной записи 255.255.255.192 совпадает с 1111111.11111111.1111111.11000000. Первые две цифры последнего октета становятся сетевыми адресами, поэтому вы получаете дополнительные сети 00000000 (0), 01000000 (64), 10000000 (128) и 11000000 (192). (Некоторые администраторы будут использовать только две из подсетей, используя 255.255.255.192 в качестве маски подсети. Для получения дополнительной информации по этой теме см. RFC 1878.) В этих четырех сетях последние шесть двоичных цифр могут использоваться для адресов узлов.

При использовании маски подсети 255.255.255.192 ваша сеть 192.168.123.0 становится четырьмя сетями: 192.168.123.0, 192.168.123.64, 192.168.123.128 и 192.168.123.192. Эти четыре сети будут иметь действительные адреса узлов:

192.168.123.1–62 192.168.123.65–126 192.168.123.129–190 192.168.123.193–254

Помните еще раз, что двоичные адреса узлов, содержащие все единицы или все нули, недействительны, поэтому вы не можете использовать адреса с последним октетом 0, 63, 64, 127, 128, 191, 192 или 255.< /p>

Вы можете увидеть, как это работает, взглянув на два адреса хоста: 192.168.123.71 и 192.168.123.133. Если вы использовали маску подсети класса C по умолчанию 255.255.255.0, оба адреса находятся в сети 192.168.123.0. Однако если вы используете маску подсети 255.255.255.192, они находятся в разных сетях; 192.168.123.71 находится в сети 192.168.123.64, 192.168.123.133 — в сети 192.168.123.128.

Шлюзы по умолчанию

Если компьютеру TCP/IP необходимо установить связь с хостом в другой сети, он обычно осуществляет связь через устройство, называемое маршрутизатором. В терминах TCP/IP маршрутизатор, указанный на узле, который связывает подсеть узла с другими сетями, называется шлюзом по умолчанию. В этом разделе объясняется, как протокол TCP/IP определяет, следует ли отправлять пакеты на шлюз по умолчанию для достижения другого компьютера или устройства в сети.

Когда хост пытается установить связь с другим устройством с помощью TCP/IP, он выполняет процесс сравнения, используя определенную маску подсети и IP-адрес назначения, с маской подсети и собственным IP-адресом. Результат этого сравнения сообщает компьютеру, является ли пункт назначения локальным или удаленным хостом.

Если в результате этого процесса пунктом назначения будет локальный хост, компьютер отправит пакет в локальную подсеть. Если в результате сравнения будет определено, что пунктом назначения является удаленный узел, то компьютер перенаправит пакет на шлюз по умолчанию, указанный в его свойствах TCP/IP. В этом случае ответственность за пересылку пакета в правильную подсеть лежит на маршрутизаторе.

Устранение неполадок

Проблемы с сетью TCP/IP часто возникают из-за неправильной настройки трех основных записей в свойствах TCP/IP компьютера. Понимая, как ошибки в конфигурации TCP/IP влияют на работу сети, вы можете решить многие распространенные проблемы с TCP/IP.

Неверная маска подсети. Если в сети используется маска подсети, отличная от маски по умолчанию для класса адресов, а клиент по-прежнему настроен на использование маски подсети по умолчанию для класса адресов, связь с некоторыми соседними сетями невозможна, но не с дальние. Например, если вы создаете четыре подсети (например, в примере с подсетями), но используете неправильную маску подсети 255.255.255.0 в конфигурации TCP/IP, хосты не смогут определить, что некоторые компьютеры находятся в разных подсетях. их. В этом случае пакеты, предназначенные для узлов в разных физических сетях, которые являются частью одного и того же адреса класса C, не будут отправляться на шлюз по умолчанию для доставки. Распространенным признаком этой проблемы является то, что компьютер может взаимодействовать с хостами, находящимися в его локальной сети, и может взаимодействовать со всеми удаленными сетями, кроме тех сетей, которые находятся поблизости и имеют одинаковый адрес класса A, B или C. Чтобы решить эту проблему, просто введите правильную маску подсети в конфигурации TCP/IP для этого хоста.

Неверный IP-адрес. Если вы поместите компьютеры с IP-адресами, которые должны находиться в разных подсетях в локальной сети друг с другом, они не смогут обмениваться данными. Они попытаются отправить пакеты друг другу через маршрутизатор, который не может правильно их переслать. Симптомом этой проблемы является компьютер, который может взаимодействовать с хостами в удаленных сетях, но не может взаимодействовать с некоторыми или всеми компьютерами в своей локальной сети. Чтобы устранить эту проблему, убедитесь, что все компьютеры в одной физической сети имеют IP-адреса в одной и той же IP-подсети. Если у вас закончились IP-адреса в одном сегменте сети, есть решения, которые выходят за рамки этой статьи.

Неправильный шлюз по умолчанию. Компьютер, для которого настроен неправильный шлюз по умолчанию, может обмениваться данными с хостами в своем собственном сегменте сети. Но он не сможет связаться с хостами в некоторых или во всех удаленных сетях. Хост может взаимодействовать с некоторыми удаленными сетями, но не с другими, если выполняются следующие условия:

  • В одной физической сети может быть несколько маршрутизаторов.
  • В качестве шлюза по умолчанию настроен неверный маршрутизатор.

Эта проблема часто возникает, если в организации есть маршрутизатор, подключенный к внутренней сети TCP/IP, и еще один маршрутизатор, подключенный к Интернету.

Ссылки

  • "TCP/IP Illustrated, Volume 1: The Protocols", Richard Stevens, Addison Wesley, 1994 г.
  • "Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture", Douglas E. Comer, Prentice Hall, 1995

Рекомендуется, чтобы системный администратор, отвечающий за сети TCP/IP, имел хотя бы один из этих справочников.

Глоссарий

Широковещательный адрес — IP-адрес, часть хоста которого состоит из единиц.

Хост – компьютер или другое устройство в сети TCP/IP.

Интернет — глобальная совокупность сетей, соединенных вместе и имеющих общий диапазон IP-адресов.

InterNIC – организация, отвечающая за администрирование IP-адресов в Интернете.

IP – сетевой протокол, используемый для отправки сетевых пакетов по сети TCP/IP или Интернету.

IP-адрес – уникальный 32-битный адрес узла в сети TCP/IP или межсетевом соединении.

Сеть. В этой статье термин "сеть" используется двумя способами. Один представляет собой группу компьютеров в одном физическом сегменте сети.Другой — это диапазон сетевых IP-адресов, выделенный системным администратором.

Сетевой адрес – IP-адрес, часть узла которого состоит из нулей.

Пакет – единица данных, передаваемая по сети TCP/IP или глобальной сети.

RFC (Request for Comment) — документ, используемый для определения стандартов в Интернете.

Маршрутизатор. Устройство, передающее сетевой трафик между разными IP-сетями.

Маска подсети – 32-разрядное число, используемое для различения сетевой и хостовой частей IP-адреса.

Подсеть или подсеть — меньшая сеть, созданная путем разделения большей сети на равные части.

TCP/IP – в широком смысле набор протоколов, стандартов и утилит, обычно используемых в Интернете и крупных сетях.

Глобальная вычислительная сеть (WAN). Большая сеть, представляющая собой набор небольших сетей, разделенных маршрутизаторами. Интернет является примером большой глобальной сети.

Локальная сеть – это набор устройств, соединенных вместе в одном физическом месте, например в здании, офисе или доме. Локальная сеть может быть маленькой или большой, от домашней сети с одним пользователем до корпоративной сети с тысячами пользователей и устройств в офисе или школе.

Независимо от размера, единственной определяющей характеристикой локальной сети является то, что она соединяет устройства, находящиеся в одной ограниченной области. Напротив, глобальная сеть (WAN) или городская сеть (MAN) покрывает более крупные географические области. Некоторые сети WAN и MAN соединяют несколько локальных сетей вместе.

Связаться с Cisco

Что есть в локальной сети?

Локальная сеть состоит из кабелей, точек доступа, коммутаторов, маршрутизаторов и других компонентов, которые позволяют устройствам подключаться к внутренним серверам, веб-серверам и другим локальным сетям через глобальные сети.

Рост виртуализации также способствовал развитию виртуальных локальных сетей, которые позволяют сетевым администраторам логически группировать сетевые узлы и разделять свои сети без необходимости серьезных изменений инфраструктуры.

Например, в офисе с несколькими отделами, такими как бухгалтерия, ИТ-поддержка и администрация, компьютеры каждого отдела могут быть логически подключены к одному и тому же коммутатору, но сегментированы, чтобы вести себя так, как если бы они были отдельными.

Каковы преимущества локальной сети?

Преимущества локальной сети такие же, как и у любой группы устройств, объединенных в сеть. Устройства могут использовать одно подключение к Интернету, обмениваться файлами друг с другом, печатать на общих принтерах, а также получать доступ друг к другу и даже управлять ими.

Локальные сети были разработаны в 1960-х годах для использования в колледжах, университетах и ​​исследовательских центрах (таких как НАСА) в первую очередь для подключения компьютеров к другим компьютерам. Только после разработки технологии Ethernet (1973 г., Xerox PARC), ее коммерциализации (1980 г.) и стандартизации (1983 г.) локальные сети стали широко использоваться.

Несмотря на то, что преимущества подключения устройств к сети всегда хорошо понимались, только после широкого распространения технологии Wi-Fi локальные сети стали обычным явлением практически в любой среде. Сегодня локальные сети используют не только предприятия и школы, но и рестораны, кафе, магазины и дома.

Беспроводное подключение также значительно расширило количество типов устройств, которые можно подключить к локальной сети. Теперь почти все, что можно вообразить, можно «подключить» — от ПК, принтеров и телефонов до смарт-телевизоров, стереосистем, динамиков, освещения, термостатов, оконных штор, дверных замков, камер видеонаблюдения — и даже кофеварок, холодильников и игрушек. /p>

Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям.Вот наиболее распространенные и широко используемые типы компьютерных сетей:

Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.

MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.

PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.

Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

Коммутаторы. Коммутатор – это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.

Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель.Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Провайдеры интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.

Топология сети

Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:

При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.

В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности.Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует много точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все это упомянуто выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

    — это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые сервисы в IBM Cloud предоставляют вам сетевые решения для повышения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.

Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.

Сеть состоит из двух или более компьютеров, которые связаны между собой для совместного использования ресурсов (например, принтеров и компакт-дисков), обмена файлами или обеспечения электронной связи. Компьютеры в сети могут быть связаны кабелями, телефонными линиями, радиоволнами, спутниками или лучами инфракрасного света.

Два очень распространенных типа сетей включают:

Вы также можете увидеть ссылки на городские сети (MAN), беспроводную локальную сеть (WLAN) или беспроводную глобальную сеть (WWAN).

Локальная сеть

Локальная вычислительная сеть (LAN) – это сеть, ограниченная относительно небольшой территорией. Как правило, это ограничено географической областью, такой как письменная лаборатория, школа или здание.

Компьютеры, подключенные к сети, обычно классифицируются как серверы или рабочие станции. Серверы, как правило, не используются людьми напрямую, а работают непрерывно, предоставляя «услуги» другим компьютерам (и их пользователям-людям) в сети. Предоставляемые услуги могут включать в себя печать и отправку факсов, хостинг программного обеспечения, хранение и совместное использование файлов, обмен сообщениями, хранение и извлечение данных, полный контроль доступа (безопасность) к сетевым ресурсам и многое другое.

Рабочие станции называются так потому, что на них обычно есть человек, который через них взаимодействует с сетью. Рабочими станциями традиционно считались настольные компьютеры, состоящие из компьютера, клавиатуры, дисплея и мыши, или ноутбуки со встроенными клавиатурой, дисплеем и сенсорной панелью. С появлением планшетных компьютеров и устройств с сенсорным экраном, таких как iPad и iPhone, наше определение рабочей станции быстро расширилось и включает эти устройства из-за их способности взаимодействовать с сетью и использовать сетевые службы.

Серверы, как правило, более мощные, чем рабочие станции, хотя конфигурация определяется потребностями. Например, группа серверов может быть расположена в безопасном месте, вдали от людей, и доступ к ним возможен только через сеть. В таких случаях серверы обычно работают без специального дисплея или клавиатуры. Однако размер и скорость серверного процессора (процессоров), жесткого диска и оперативной памяти могут значительно увеличить стоимость системы. С другой стороны, рабочей станции может не требоваться столько места для хранения или оперативной памяти, но для удовлетворения потребностей пользователя может потребоваться дорогостоящий дисплей. Каждый компьютер в сети должен быть соответствующим образом настроен для его использования.

В одной локальной сети компьютеры и серверы могут быть соединены кабелями или по беспроводной сети. Беспроводной доступ к проводной сети возможен благодаря точкам беспроводного доступа (WAP). Эти устройства WAP обеспечивают мост между компьютерами и сетями. Типичная точка доступа может иметь теоретическую пропускную способность для подключения к сети сотен или даже тысяч беспроводных пользователей, хотя практическая пропускная способность может быть намного меньше.

Почти всегда серверы будут подключаться к сети кабелями, потому что кабельные соединения остаются самыми быстрыми. Стационарные рабочие станции (настольные) также обычно подключаются к сети кабелем, хотя стоимость беспроводных адаптеров снизилась до такой степени, что при установке рабочих станций в существующем помещении с неадекватной проводкой может быть проще и дешевле подключиться к сети. использовать беспроводную связь для рабочего стола.

Дополнительную информацию о настройке локальной сети см. в разделах «Топология», «Кабели» и «Оборудование» этого руководства.

Глобальная сеть

Глобальные сети (WAN) соединяют сети в более крупных географических регионах, таких как Флорида, США или по всему миру. Для подключения этого типа глобальной сети можно использовать выделенные трансокеанские кабельные или спутниковые каналы связи.

Используя глобальную сеть, школы Флориды могут связываться с такими местами, как Токио, за считанные секунды, не оплачивая огромные счета за телефон. Два пользователя на расстоянии полмира с рабочими станциями, оборудованными микрофонами и веб-камерами, могут проводить телеконференции в режиме реального времени. WAN — это сложно.Он использует мультиплексоры, мосты и маршрутизаторы для подключения местных и городских сетей к глобальным коммуникационным сетям, таким как Интернет. Однако для пользователей глобальная сеть не будет сильно отличаться от локальной сети.

Преимущества установки школьной сети

Управление доступом пользователей. Современные сети почти всегда имеют один или несколько серверов, что позволяет централизованно управлять пользователями и сетевыми ресурсами, к которым у них есть доступ. Учетные данные пользователя в частной и управляемой сети могут быть такими же простыми, как имя пользователя и пароль, но с постоянно растущим вниманием к проблемам компьютерной безопасности эти серверы имеют решающее значение для обеспечения того, чтобы конфиденциальная информация была доступна только авторизованным пользователям. Хранение и обмен информацией. Компьютеры позволяют пользователям создавать и манипулировать информацией. Информация в сети живет своей собственной жизнью. Сеть предоставляет как место для хранения информации, так и механизмы для обмена этой информацией с другими пользователями сети. Соединения. Администраторы, преподаватели и даже студенты и гости могут быть подключены к сети кампуса. Услуги. Школа может предоставлять такие услуги, как регистрация, школьные справочники, расписания курсов, доступ к исследованиям, учетные записи электронной почты и многие другие. (Помните, что сетевые службы обычно предоставляются серверами). Интернет. Школа может предоставить пользователям сети доступ к Интернету через интернет-шлюз. Вычислительные ресурсы. Школа может предоставить доступ к специализированным вычислительным устройствам, которыми отдельные пользователи обычно не владеют. Например, школьная сеть может иметь высокоскоростные высококачественные принтеры, стратегически расположенные по территории кампуса для использования инструкторами или учащимися. Гибкий доступ. Школьные сети позволяют учащимся получать доступ к своей информации с подключенных устройств по всей школе. Учащиеся могут начать задание в своем классе, сохранить часть его в общедоступной зоне сети, а затем пойти в медиацентр после уроков, чтобы закончить свою работу. Студенты также могут работать совместно через сеть. Вычисление рабочей группы. Программное обеспечение для совместной работы позволяет многим пользователям одновременно работать над документом или проектом. Например, преподаватели, работающие в разных школах округа, могут одновременно вносить свои идеи о новых стандартах учебной программы в один и тот же документ, электронные таблицы или веб-сайт.

Дорогая установка. Крупные сети кампусов могут иметь высокие цены. Кабели, сетевые карты, маршрутизаторы, мосты, брандмауэры, точки беспроводного доступа и программное обеспечение могут стоить дорого, а для установки, безусловно, потребуются услуги технических специалистов. Но благодаря простоте настройки домашних сетей простую сеть с доступом в Интернет можно настроить для небольшого кампуса за полдня. Требуется административное время. Надлежащее обслуживание сети требует значительного времени и опыта. Многие школы установили сеть только для того, чтобы обнаружить, что в бюджете не предусмотрена необходимая административная поддержка. Серверы выходят из строя. Хотя сетевой сервер не более подвержен сбоям, чем любой другой компьютер, когда файловый сервер «выходит из строя», вся сеть может остановиться. Хорошие методы проектирования сети говорят о том, что критически важные сетевые службы (предоставляемые серверами) должны быть избыточными в сети, когда это возможно. Кабели могут порваться. В главе «Топология» представлена ​​информация о различных конфигурациях кабелей. Некоторые конфигурации предназначены для сведения к минимуму неудобств, связанных с оборванным кабелем; при других конфигурациях один оборванный кабель может остановить всю сеть. Безопасность и соответствие. Безопасность сети стоит дорого. Это также очень важно. Школьная сеть, возможно, будет подвергаться более строгим требованиям безопасности, чем корпоративная сеть аналогичного размера, из-за вероятности хранения личной и конфиденциальной информации пользователей сети, опасность которой может усугубляться, если какие-либо пользователи сети являются несовершеннолетними. Большое внимание необходимо уделять сетевым службам, чтобы обеспечить соответствие всего сетевого контента сетевому сообществу, которое он обслуживает.

4202 E. Fowler Ave., EDU162

Тампа, Флорида 33620

Доктор. Рой Винкельман, директор

Эта публикация была подготовлена ​​в рамках гранта Министерства образования Флориды.

Информация, содержащаяся в этом документе, основана на информации, доступной на момент публикации, и может быть изменена. Несмотря на то, что были предприняты все разумные усилия для включения точной информации, Флоридский центр учебных технологий не дает никаких гарантий в отношении точности, полноты или пригодности информации, представленной здесь, для какой-либо конкретной цели. Ничто в данном документе не может быть истолковано как рекомендация использовать какой-либо продукт или услугу в нарушение существующих патентов или прав третьих лиц.

GCFGlobal Logo

поиск меню

Логотип Goodwill

Урок 13. Подключение к Интернету

Как подключиться к Интернету?

После того, как вы настроите свой компьютер, вы можете приобрести домашний доступ в Интернет, чтобы отправлять и получать электронную почту, просматривать веб-страницы, транслировать видео и выполнять другие действия. Вы даже можете настроить домашнюю беспроводную сеть, известную как Wi-Fi, чтобы одновременно подключать несколько устройств к Интернету.

Посмотрите видео ниже, чтобы узнать о подключении к Интернету.

Ищете старую версию этого видео? Вы все еще можете просмотреть его здесь.

Типы интернет-услуг

Тип интернет-услуг, которые вы выберете, во многом будет зависеть от того, какие интернет-провайдеры (ISP) обслуживают ваш регион, а также от типов предлагаемых ими услуг. Вот некоторые распространенные типы интернет-услуг.

  • Коммутируемый доступ. Как правило, это самый медленный тип подключения к Интернету, и вам, вероятно, следует избегать его, если только это не единственная услуга, доступная в вашем регионе. Коммутируемый доступ в Интернет использует вашу телефонную линию, поэтому, если у вас нет нескольких телефонных линий, вы не сможете использовать стационарный телефон и Интернет одновременно.
  • DSL: служба DSL использует широкополосное соединение, что делает ее намного быстрее, чем коммутируемое соединение. DSL подключается к Интернету через телефонную линию, но не требует наличия стационарного телефона дома. И, в отличие от коммутируемого доступа, вы сможете одновременно пользоваться Интернетом и телефонной линией.
  • Кабельное телевидение. Кабельное телевидение подключается к Интернету через кабельное телевидение, хотя для его подключения не обязательно иметь кабельное телевидение. Он использует широкополосное соединение и может быть быстрее, чем коммутируемое соединение и услуга DSL; однако он доступен только там, где доступно кабельное телевидение.
  • Спутник. Спутниковое соединение использует широкополосный доступ, но не требует кабельных или телефонных линий. он подключается к Интернету через спутники, вращающиеся вокруг Земли. В результате его можно использовать практически в любой точке мира, но на соединение могут влиять погодные условия. Спутниковое подключение также обычно медленнее, чем DSL или кабельное.
  • 3G и 4G: службы 3G и 4G чаще всего используются с мобильными телефонами и подключаются по беспроводной сети через сеть вашего интернет-провайдера. Однако эти типы соединений не всегда такие же быстрые, как DSL или кабель. Они также будут ограничивать объем данных, которые вы можете использовать каждый месяц, что не относится к большинству планов широкополосного доступа.

Выбор интернет-провайдера

Теперь, когда вы знаете о различных типах интернет-услуг, вы можете провести небольшое исследование, чтобы выяснить, какие интернет-провайдеры доступны в вашем регионе. Если у вас возникли проблемы с началом работы, мы рекомендуем поговорить с друзьями, членами семьи и соседями о интернет-провайдерах, которыми они пользуются. Обычно это дает вам хорошее представление о типах Интернет-услуг, доступных в вашем районе.

Большинство интернет-провайдеров предлагают несколько уровней обслуживания с разной скоростью Интернета, обычно измеряемой в Мбит/с (сокращение от мегабит в секунду). Если вы в основном хотите использовать Интернет для работы с электронной почтой и социальными сетями, вам может понадобиться более медленное соединение (около 2–5 Мбит/с). Однако если вы хотите загружать музыку или транслировать видео, вам потребуется более быстрое соединение (не менее 5 Мбит/с).

Необходимо также учитывать стоимость услуги, включая плату за установку и ежемесячную плату. Вообще говоря, чем быстрее подключение, тем дороже будет в месяц.

Несмотря на то, что коммутируемый доступ традиционно был самым дешевым вариантом, многие интернет-провайдеры повысили цены на коммутируемый доступ, чтобы они были такими же, как и при широкополосном доступе. Это призвано побудить людей перейти на широкополосную связь. Мы не рекомендуем коммутируемый доступ в Интернет, если это не единственный вариант.

Необходимое оборудование

Модем

modem

Если у вас есть компьютер, вам не нужно много дополнительного оборудования для подключения к Интернету. Основное оборудование, которое вам нужно, — это модем.

Тип выбранного вами доступа в Интернет будет определять тип модема, который вам нужен. Коммутируемый доступ использует телефонный модем, DSL-сервис использует DSL-модем, кабельный доступ использует кабельный модем, а спутниковый сервис использует спутниковый адаптер. Ваш интернет-провайдер может предоставить вам модем — часто за определенную плату — когда вы подписываете контракт, что помогает убедиться, что у вас есть модем нужного типа. Однако, если вы предпочитаете более качественный или менее дорогой модем, вы можете купить его отдельно.

Маршрутизатор

беспроводной маршрутизатор

Маршрутизатор – это аппаратное устройство, которое позволяет подключать несколько компьютеров и других устройств к одному интернет-соединению, известному как домашняя сеть. Многие маршрутизаторы являются беспроводными, что позволяет создавать домашнюю беспроводную сеть, широко известную как сеть Wi-Fi.

Для подключения к Интернету не обязательно покупать маршрутизатор. Компьютер можно подключить напрямую к модему с помощью кабеля Ethernet. Кроме того, многие модемы имеют встроенный маршрутизатор, поэтому у вас есть возможность создать сеть Wi-Fi без покупки дополнительного оборудования.

Настройка подключения к Интернету

техник в доме

После того как вы выбрали поставщика услуг Интернета, большинство провайдеров пришлют к вам на дом технического специалиста для подключения. В противном случае вы сможете использовать инструкции, предоставленные вашим интернет-провайдером или прилагаемые к модему, для настройки подключения к Интернету.

После того, как вы все настроите, вы можете открыть веб-браузер и начать пользоваться Интернетом. Если у вас возникли проблемы с подключением к Интернету, вы можете позвонить по номеру технической поддержки вашего интернет-провайдера.

Домашняя сеть

домашняя сеть

Если у вас дома несколько компьютеров и вы хотите использовать их все для доступа в Интернет, вы можете создать домашнюю сеть, также известную как сеть Wi-Fi. В домашней сети все ваши устройства подключаются к вашему маршрутизатору, который подключен к модему. Это означает, что все члены вашей семьи могут пользоваться Интернетом одновременно.

Ваш технический специалист интернет-провайдера может настроить домашнюю сеть Wi-Fi при установке вашего интернет-сервиса. Если нет, вы можете просмотреть наш урок «Как настроить сеть Wi-Fi», чтобы узнать больше.

Если вы хотите подключить компьютер без встроенной функции подключения к сети Wi-Fi, вы можете приобрести адаптер Wi-Fi, который подключается к USB-порту вашего компьютера.

Читайте также: