Как называется информация, записанная каким-либо образом и хранящаяся в памяти компьютера
Обновлено: 21.11.2024
Не знаете точно, для чего нужна компьютерная память и как она работает? Мы охватываем все основы, от того, что такое оперативная память, до того, как она работает и почему стоит получить обновление.
Почему так важна компьютерная память (ОЗУ)?
Оперативная память компьютера (ОЗУ) — один из наиболее важных компонентов, определяющих производительность вашей системы. Оперативная память дает приложениям место для хранения данных и доступа к ним на краткосрочной основе. В нем хранится информация, которую ваш компьютер активно использует, чтобы к ней можно было быстро получить доступ.
Чем больше программ запущено в вашей системе, тем больше вам потребуется. SSD (твердотельные накопители) также являются важными компонентами и помогут вашей системе достичь максимальной производительности.
Скорость и производительность вашей системы напрямую зависят от объема установленной оперативной памяти. Если в вашей системе слишком мало оперативной памяти, она может работать медленно и вяло. Но, с другой стороны, вы можете установить слишком много, практически не получая дополнительных преимуществ. Есть способы узнать, требуется ли вашему компьютеру больше памяти, и убедиться, что вы покупаете память, совместимую с другими компонентами вашей системы. Как правило, компоненты создаются в соответствии с высочайшими стандартами на момент производства, но с расчетом на то, что технологии будут продолжать меняться.
Чтобы пользователи не могли вставить несовместимую память, модули физически различаются для каждого поколения технологии памяти. Эти физические различия являются стандартными для всей индустрии памяти. Одна из причин общеотраслевой стандартизации памяти заключается в том, что производителям компьютеров необходимо знать электрические параметры и физическую форму памяти, которую можно установить в их компьютеры.
Что такое скорость и задержка ОЗУ?
Производительность оперативной памяти зависит от соотношения скорости и задержки. Хотя они тесно связаны, они не связаны так, как вы могли бы подумать. На базовом уровне задержка относится к временной задержке между вводом команды и доступностью данных. Понимание скорости и задержки оперативной памяти поможет вам лучше выбрать правильную оперативную память для установки в вашей системе в соответствии с вашими потребностями.
Что делает ОЗУ (память)?
Оперативная память позволяет вашему компьютеру выполнять множество повседневных задач, таких как загрузка приложений, работа в Интернете, редактирование электронных таблиц или запуск последней игры. Память также позволяет вам быстро переключаться между этими задачами, запоминая, где вы находитесь в одной задаче, когда переключаетесь на другую задачу. Как правило, чем больше у вас памяти, тем лучше.
Когда вы включаете компьютер и открываете электронную таблицу для ее редактирования, но сначала проверяете свою электронную почту, вы используете память несколькими способами. Память используется для загрузки и запуска приложений, таких как программа для работы с электронными таблицами, ответа на команды, таких как любые изменения, которые вы внесли в электронную таблицу, или переключения между несколькими программами, например, когда вы вышли из электронной таблицы, чтобы проверить электронную почту. Память почти всегда активно используется вашим компьютером. Если ваша система работает медленно или не отвечает, вам может потребоваться обновление памяти. Если вы считаете, что вам может понадобиться больше памяти, вы можете легко увеличить объем оперативной памяти вашего настольного компьютера или ноутбука самостоятельно.
В каком-то смысле память похожа на ваш рабочий стол. Это позволяет вам работать над различными проектами, и чем больше ваш стол, тем больше бумаг, папок и задач вы можете иметь одновременно. Вы можете быстро и легко получить доступ к информации, не заходя в картотеку (ваш накопитель). Когда вы закончите работу над проектом или уйдете на день, вы можете положить некоторые или все проекты в картотеку на хранение. Ваш накопитель (жесткий диск или твердотельный накопитель) — это шкаф для хранения документов, который работает вместе с вашим рабочим столом для отслеживания ваших проектов.
Что использует оперативную память?
Оперативная память используется для хранения информации, которую необходимо быстро использовать. Это означает, что открытие многих программ, запуск различных процессов или одновременный доступ к нескольким файлам, вероятно, будут использовать много оперативной памяти. Особенно сложные программы, такие как игры или программное обеспечение для дизайна, будут использовать большую часть оперативной памяти.
Нужно ли вам обновить оперативную память?
Являетесь ли вы геймером, дизайнером или просто хотите ускорить свой персональный компьютер, увеличение объема оперативной памяти — это простой и легкий способ повысить производительность вашей системы. Чтобы определить правильный тип памяти для вашего компьютера, используйте Crucial® Advisor™ или System Scanner. Эти инструменты помогут вам определить, какие модули памяти совместимы с вашим компьютером, а также выбрать параметры, соответствующие вашим требованиям к скорости и бюджету.
© Micron Technology, Inc., 2017. Все права защищены. Информация, продукты и/или технические характеристики могут быть изменены без предварительного уведомления. Ни Crucial, ни Micron Technology, Inc. не несут ответственности за упущения или ошибки в типографике или фотографии.Micron, логотип Micron, Crucial и логотип Crucial являются товарными знаками или зарегистрированными товарными знаками Micron Technology, Inc. Все остальные товарные знаки и знаки обслуживания являются собственностью соответствующих владельцев.
Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.
Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.
память компьютера, устройство, используемое для хранения данных или программ (последовательностей инструкций) на временной или постоянной основе для использования в электронном цифровом компьютере. Компьютеры представляют информацию в двоичном коде, записанном в виде последовательностей нулей и единиц. Каждая двоичная цифра (или «бит») может быть сохранена любой физической системой, которая может находиться в одном из двух стабильных состояний, представляющих 0 и 1. Такая система называется бистабильной. Это может быть выключатель, электрический конденсатор, который может накапливать или терять заряд, магнит с полярностью вверх или вниз или поверхность, на которой может быть ямка или нет. Сегодня конденсаторы и транзисторы, работающие как крошечные электрические переключатели, используются для временного хранения, а для долговременного хранения используются либо диски, либо ленты с магнитным покрытием, либо пластиковые диски с узором из ямок.
Память компьютера делится на основную (или первичную) память и вспомогательную (или вторичную) память. Основная память содержит инструкции и данные во время выполнения программы, а вспомогательная память содержит данные и программы, которые в данный момент не используются, и обеспечивает долгосрочное хранение.
Как Интернет перемещает информацию между компьютерами? Какая операционная система сделана Microsoft? Войдите в этот тест и проверьте свои знания о компьютерах и операционных системах.
Основная память
Самыми ранними запоминающими устройствами были электромеханические переключатели или реле (см. компьютеры: первый компьютер) и электронные лампы (см. компьютеры: первая хранимая программа). машины). В конце 1940-х годов первые компьютеры с хранимой программой использовали в качестве основной памяти ультразвуковые волны в ртутных трубках или заряды в специальных электронных лампах. Последние были первой оперативной памятью (ОЗУ). ОЗУ содержит ячейки памяти, к которым можно получить прямой доступ для операций чтения и записи, в отличие от памяти с последовательным доступом, такой как магнитная лента, в которой необходимо последовательно обращаться к каждой ячейке, пока не будет найдена требуемая ячейка.
Магнитная память барабана
Магнитные барабаны с фиксированными головками чтения/записи для каждой из множества дорожек на внешней поверхности вращающегося цилиндра, покрытого ферромагнитным материалом, использовались как для основной, так и для вспомогательной памяти в 1950-х годах, хотя доступ к данным у них был последовательным. .
Память на магнитном сердечнике
Примерно в 1952 году была разработана первая относительно дешевая оперативная память: память на магнитных сердечниках, расположение крошечных ферритовых сердечников на проволочной сетке, через которую можно было направлять ток для изменения выравнивания отдельных сердечников. Из-за присущих ОЗУ преимуществ основная память была основной формой основной памяти, пока в конце 1960-х годов ее не вытеснила полупроводниковая память.
Полупроводниковая память
Существует два основных типа полупроводниковой памяти. Статическая RAM (SRAM) состоит из триггеров, бистабильной схемы, состоящей из четырех-шести транзисторов. Как только триггер сохраняет бит, он сохраняет это значение до тех пор, пока в нем не будет сохранено противоположное значение. SRAM обеспечивает быстрый доступ к данным, но физически она относительно велика. Он используется в основном для небольших объемов памяти, называемых регистрами, в центральном процессоре компьютера (ЦП) и для быстрой «кэш-памяти». Динамическое ОЗУ (DRAM) хранит каждый бит в электрическом конденсаторе, а не в триггере, используя транзистор в качестве переключателя для зарядки или разрядки конденсатора. Поскольку в нем меньше электрических компонентов, ячейка памяти DRAM меньше, чем SRAM. Однако доступ к его значению происходит медленнее, и, поскольку конденсаторы постепенно теряют заряд, хранящиеся значения необходимо перезаряжать примерно 50 раз в секунду. Тем не менее, DRAM обычно используется для основной памяти, потому что чип того же размера может вместить в несколько раз больше DRAM, чем SRAM.
Ячейки памяти в оперативной памяти имеют адреса. Обычно оперативную память организуют в «слова» от 8 до 64 бит или от 1 до 8 байт (8 бит = 1 байт). Размер слова обычно представляет собой количество битов, которые могут быть переданы за один раз между основной памятью и ЦП. Каждое слово и обычно каждый байт имеют адрес.Микросхема памяти должна иметь дополнительные схемы декодирования, которые выбирают набор ячеек хранения, находящихся по определенному адресу, и либо сохраняют значение по этому адресу, либо извлекают то, что там хранится. Основная память современного компьютера состоит из нескольких микросхем памяти, каждая из которых может содержать много мегабайт (миллионов байтов), а схема адресации выбирает соответствующую микросхему для каждого адреса. Кроме того, DRAM требует, чтобы схемы обнаруживали сохраненные значения и периодически обновляли их.
Для доступа к данным основной памяти требуется больше времени, чем процессору для работы с ними. Например, доступ к памяти DRAM обычно занимает от 20 до 80 наносекунд (миллиардных долей секунды), но арифметические операции ЦП могут занимать всего наносекунду или меньше. Есть несколько способов справиться с этим несоответствием. ЦП имеют небольшое количество регистров, очень быструю SRAM, в которой хранятся текущие инструкции и данные, с которыми они работают. Кэш-память — это больший объем (до нескольких мегабайт) быстрой SRAM на кристалле ЦП. Данные и инструкции из основной памяти передаются в кэш-память, а поскольку программы часто демонстрируют «локальность ссылок», то есть они некоторое время выполняют одну и ту же последовательность инструкций в повторяющемся цикле и оперируют наборами связанных данных, ссылки на память могут помещаться в быстрый кэш после того, как в него будут скопированы значения из основной памяти.
Большая часть времени доступа к DRAM уходит на декодирование адреса для выбора соответствующих ячеек памяти. Свойство локальности ссылки означает, что последовательность адресов памяти будет часто использоваться, а быстрая DRAM предназначена для ускорения доступа к последующим адресам после первого. Синхронная DRAM (SDRAM) и EDO (расширенный вывод данных) — два таких типа быстрой памяти.
Энергонезависимая полупроводниковая память, в отличие от SRAM и DRAM, не теряет своего содержимого при отключении питания. Некоторые энергонезависимые запоминающие устройства, такие как постоянное запоминающее устройство (ПЗУ), нельзя перезаписывать после изготовления или записи. Каждая ячейка памяти микросхемы ПЗУ имеет либо транзистор для 1 бита, либо ни одного для 0 бита. ПЗУ используются для программ, которые являются неотъемлемой частью работы компьютера, таких как программа начальной загрузки, которая запускает компьютер и загружает его операционную систему, или BIOS (базовая система ввода-вывода), которая обращается к внешним устройствам в персональном компьютере (ПК).
EPROM (стираемое программируемое ПЗУ), EAROM (электрически изменяемое ПЗУ) и флэш-память — это типы энергонезависимой памяти, которые можно перезаписывать, хотя перезапись занимает гораздо больше времени, чем чтение. Таким образом, они используются в качестве памяти специального назначения, когда запись требуется редко — если они используются, например, для BIOS, их можно изменить для исправления ошибок или обновления функций.
Кэширование памяти (часто называемое просто кэшированием) – это метод, при котором компьютерные приложения временно сохраняют данные в основной памяти компьютера (т. е. в оперативной памяти или ОЗУ), чтобы обеспечить быстрое извлечение этих данных. Оперативная память, используемая для временного хранения, называется кешем. Поскольку доступ к ОЗУ значительно быстрее, чем доступ к другим носителям, таким как жесткие диски или сети, кэширование помогает приложениям работать быстрее благодаря более быстрому доступу к данным. Кэширование особенно эффективно, когда приложение демонстрирует общий шаблон, в котором оно неоднократно обращается к данным, к которым ранее обращались. Кэширование также полезно для хранения вычислений данных, которые в противном случае требуют много времени для вычислений. Сохраняя вычисления в кэше, система экономит время, избегая повторения вычислений.
Обзор кэширования памяти
Как работает кэширование памяти?
При кэшировании памяти сначала выделяется часть оперативной памяти, которая будет использоваться в качестве кэша. Когда приложение пытается прочитать данные, обычно из системы хранения данных, такой как база данных, оно проверяет, существует ли уже нужная запись в кэше. Если это так, то приложение будет считывать данные из кеша, тем самым устраняя более медленный доступ к базе данных. Если нужной записи нет в кеше, то приложение считывает запись из источника. Когда он извлекает эти данные, он также записывает данные в кеш, чтобы, когда приложению потребуются те же данные в будущем, оно могло быстро получить их из кеша.
Поскольку размер кеша ограничен, со временем некоторые данные, уже находящиеся в кеше, придется удалить, чтобы освободить место для новых данных, к которым приложение обращалось последним. Это означает, что системе кэширования нужна стратегия удаления записей для освобождения места. Стратегия будет зависеть от характера доступа к данным приложения и, как правило, будет пытаться удалить записи, к которым не ожидается повторного доступа в ближайшее время.Например, стратегия наименее недавно использованных (LRU) удалит запись, последний доступ к которой был до любой другой записи в кэше. Здесь предполагается, что если с момента доступа к записи прошло много времени, то, скорее всего, к ней скоро не будут обращаться снова. Или, другими словами, записи, которые чаще всего использовались в последнее время, скорее всего, скоро будут использоваться снова. Стратегия наименее часто используемого (LFU) предполагает отслеживание количества обращений к каждой записи в кэше и удаление записи с наименьшим количеством обращений. Здесь предполагается, что редко используемая запись вряд ли будет использоваться снова в ближайшее время.
Проблема с кешем заключается в том, как свести к минимуму «промахи кеша», т. е. попытки считывания приложением записей, которых нет в кеше. Если у вас слишком много промахов, эффективность вашего кеша снижается. Приложение, которое только читает новые данные, не выиграет от кеша и фактически будет демонстрировать более низкую производительность из-за дополнительной работы по проверке кеша, но не находит в нем нужную запись. Одним из способов решения этой проблемы является использование больших кешей. Это часто нецелесообразно на одном компьютере, поэтому распределенные кэши являются популярным выбором для ускорения работы приложений, которым необходим доступ к большим наборам данных. Распределенный кэш-память объединяет оперативную память нескольких компьютеров, подключенных к кластеру, так что вы можете создать кэш большего размера, который может продолжать расти, добавляя новые компьютеры в кластер. Такие технологии, как Hazelcast IMDG, можно использовать в качестве распределенного кластера для ускорения крупномасштабных приложений.
Еще одна проблема кеша — это риск чтения "устаревших" данных, когда данные в кеше не отражают последние данные в базовом источнике. Часто этот риск является приемлемым компромиссом ради производительности приложения. В тех случаях, когда это не так, приложение, которое обновляет базовый источник данных, должно обновить соответствующую запись в кэше.
Примеры использования
Одним из широких вариантов использования кэширования в памяти является ускорение работы приложений баз данных, особенно тех, которые выполняют много операций чтения из базы данных. Заменяя часть операций чтения базы данных операциями чтения из кэша, приложения могут устранить задержку, возникающую при частом доступе к базе данных. Этот вариант использования обычно встречается в средах, где наблюдаются большие объемы доступа к данным, например, на веб-сайте с высоким трафиком, который содержит динамический контент из базы данных.
Другой вариант использования включает ускорение запросов, при котором результаты сложного запроса к базе данных сохраняются в кэше. Выполнение сложных запросов, выполняющих такие операции, как группировка и упорядочивание, может занять значительное время. Если запросы выполняются повторно, как в случае с информационной панелью бизнес-аналитики (BI), к которой обращаются многие пользователи, сохранение результатов в кэше повысит скорость отклика этих информационных панелей.
Хранилище данных — это магнитный, оптический или механический носитель, который записывает и сохраняет цифровую информацию для текущих или будущих операций.
Хранение данных определено
Существует два типа цифровой информации: входные и выходные данные. Пользователи предоставляют входные данные. Компьютеры предоставляют выходные данные. Но центральный процессор компьютера не может ничего вычислить или выдать выходные данные без участия пользователя.
Пользователи могут вводить входные данные непосредственно в компьютер. Однако в начале компьютерной эры они обнаружили, что постоянный ввод данных вручную отнимает много времени и энергии. Одним из краткосрочных решений является компьютерная память, также известная как оперативная память (ОЗУ). Но его емкость и объем памяти ограничены. Память только для чтения (ПЗУ), как следует из названия, данные можно только читать, но не обязательно редактировать. Они управляют основными функциями компьютера.
Несмотря на прогресс в компьютерной памяти с динамической ОЗУ (DRAM) и синхронной динамической ОЗУ (SDRAM), они по-прежнему ограничены стоимостью, объемом и сохранением памяти. Когда компьютер выключается, снижается и способность оперативной памяти сохранять данные. Решение? Хранилище данных.
Благодаря месту для хранения данных пользователи могут сохранять данные на устройство. И если компьютер выключается, данные сохраняются. И вместо того, чтобы вручную вводить данные в компьютер, пользователи могут указать компьютеру извлекать данные с устройств хранения. Компьютеры могут считывать входные данные из различных источников по мере необходимости, а затем создавать и сохранять выходные данные в тех же источниках или в других местах хранения. Пользователи также могут делиться хранилищем данных с другими.
Сегодня организациям и пользователям требуется хранилище данных для удовлетворения современных вычислительных потребностей высокого уровня, таких как проекты с большими данными, искусственный интеллект (ИИ), машинное обучение и Интернет вещей (IoT). И другая сторона необходимости хранения огромных объемов данных — это защита от потери данных из-за аварии, сбоя или мошенничества. Таким образом, чтобы избежать потери данных, организации также могут использовать хранилище данных в качестве решения для резервного копирования.
Как работает хранилище данных.
Проще говоря, современные компьютеры или терминалы подключаются к устройствам хранения либо напрямую, либо через сеть. Пользователи инструктируют компьютеры о доступе к данным и сохранении данных на этих устройствах хранения. Однако на фундаментальном уровне существует две основы хранения данных: форма, в которой данные принимаются, и устройства, на которых данные записываются и хранятся.
Устройства хранения данных
Для хранения данных независимо от формы пользователям необходимы запоминающие устройства. Устройства для хранения данных делятся на две основные категории: локальное хранилище и сетевое хранилище.
Хранилище с прямым подключением, также известное как хранилище с прямым подключением (DAS), следует из названия. Это хранилище часто находится в непосредственной близости и напрямую связано с вычислительной машиной, обращающейся к нему. Часто это единственная подключенная к нему машина. DAS также может предоставлять достойные услуги локального резервного копирования, но совместное использование ограничено. Устройства DAS включают гибкие диски, оптические диски — компакт-диски (CD) и цифровые видеодиски (DVD) — жесткие диски (HDD), флэш-накопители и твердотельные накопители (SSD).
Сетевое хранилище позволяет нескольким компьютерам получать к нему доступ через сеть, что упрощает обмен данными и совместную работу. Возможности внешнего хранилища также делают его более подходящим для резервного копирования и защиты данных. Двумя распространенными настройками сетевого хранилища являются сетевое хранилище (NAS) и сеть хранения данных (SAN).
NAS часто представляет собой отдельное устройство, состоящее из избыточных контейнеров хранения или избыточного массива независимых дисков (RAID). Хранилище SAN может представлять собой сеть из нескольких устройств различных типов, включая SSD и флэш-накопители, гибридное хранилище, гибридное облачное хранилище, программное обеспечение и устройства для резервного копирования, а также облачное хранилище. Вот чем отличаются NAS и SAN:
NAS
- Одно устройство хранения или RAI
- Система хранения файлов
- Сеть TCP/IP Ethernet
- Ограниченное количество пользователей
- Ограниченная скорость
- Ограниченные возможности расширения
- Более низкая стоимость и простота настройки
САН
- Сеть из нескольких устройств
- Блочная система хранения
- Сеть Fibre Channel
- Оптимизировано для нескольких пользователей
- Более высокая производительность
- Широкие возможности расширения
- Более высокая стоимость и сложная настройка
Типы устройств хранения
SSD и флэш-память
Флэш-память – это твердотельная технология, в которой для записи и хранения данных используются микросхемы флэш-памяти. Флэш-накопитель на твердотельном диске (SSD) хранит данные с помощью флэш-памяти. По сравнению с жесткими дисками твердотельная система не имеет движущихся частей и, следовательно, имеет меньшую задержку, поэтому требуется меньшее количество твердотельных накопителей. Поскольку большинство современных твердотельных накопителей основаны на флэш-памяти, флэш-память является синонимом твердотельной системы.
Гибридное хранилище
Твердотельные накопители и флеш-накопители обеспечивают более высокую пропускную способность, чем жесткие диски, но массивы на флэш-дисках могут быть более дорогими. Многие организации применяют гибридный подход, сочетая скорость флэш-памяти с емкостью жестких дисков. Сбалансированная инфраструктура хранения данных позволяет компаниям применять подходящие технологии для различных потребностей в хранении данных. Он предлагает экономичный способ перехода от традиционных жестких дисков без перехода на флэш-память.
Облачное хранилище
Облачное хранилище представляет собой экономичную масштабируемую альтернативу хранению файлов на локальных жестких дисках или в сетях хранения данных. Поставщики облачных услуг позволяют вам сохранять данные и файлы в удаленном месте, к которому вы получаете доступ через общедоступный Интернет или выделенное частное сетевое соединение. Поставщик размещает, защищает, управляет и обслуживает серверы и связанную с ними инфраструктуру, а также обеспечивает доступ к данным в любое время, когда вам это нужно.
Гибридное облачное хранилище
Хранилище гибридного облака сочетает в себе элементы частного и общедоступного облака. Благодаря гибридному облачному хранилищу организации могут выбирать, в каком облаке хранить данные. Например, строго регулируемые данные, к которым предъявляются строгие требования по архивированию и репликации, обычно больше подходят для среды частного облака. В то время как менее конфиденциальные данные могут храниться в общедоступном облаке. Некоторые организации используют гибридные облака, чтобы дополнить свои внутренние сети хранения общедоступным облачным хранилищем.
Программное обеспечение и устройства для резервного копирования
Хранилище резервных копий и устройства защищают данные от потери в случае аварии, сбоя или мошенничества. Они периодически делают копии данных и приложений на отдельном вторичном устройстве, а затем используют эти копии для аварийного восстановления.Устройства резервного копирования варьируются от жестких дисков и твердотельных накопителей до ленточных накопителей и серверов, но хранилище резервных копий также может предлагаться как услуга, также известная как резервное копирование как услуга (BaaS). Как и большинство решений как услуга, BaaS предоставляет недорогой вариант защиты данных, сохраняя их в удаленном расположении с возможностью масштабирования.
Формы хранения данных
Данные можно записывать и хранить в трех основных формах: хранилище файлов, хранилище блоков и хранилище объектов.
Хранение файлов
Файловое хранилище, также называемое хранилищем на уровне файлов или файловым хранилищем, представляет собой иерархическую методологию хранения, используемую для организации и хранения данных. Другими словами, данные хранятся в файлах, файлы организованы в папки, а папки организованы в виде иерархии каталогов и подкаталогов.
Блокировать хранилище
Блочное хранилище, иногда называемое хранилищем на уровне блоков, представляет собой технологию, используемую для хранения данных в блоках. Затем блоки сохраняются как отдельные части, каждая из которых имеет уникальный идентификатор. Разработчики предпочитают блочное хранилище для вычислительных ситуаций, требующих быстрой, эффективной и надежной передачи данных.
Хранилище объектов
Объектное хранилище, часто называемое объектным хранилищем, представляет собой архитектуру хранения данных для обработки больших объемов неструктурированных данных. Эти данные не соответствуют или не могут быть легко организованы в традиционной реляционной базе данных со строками и столбцами. Примеры включают электронную почту, видео, фотографии, веб-страницы, аудиофайлы, данные датчиков и другие типы мультимедиа и веб-контента (текстового или нетекстового).
Хранение данных для бизнеса
Компьютерная память и локальное хранилище могут не обеспечивать достаточно места для хранения, защиты хранилища, доступа нескольких пользователей, скорости и производительности для корпоративных приложений. Поэтому в большинстве организаций в дополнение к системе хранения NAS используется та или иная форма SAN.
SAN
SAN, которую иногда называют сетью за серверами, представляет собой специализированную высокоскоростную сеть, к которой подключены серверы и устройства хранения. Он состоит из коммуникационной инфраструктуры, которая обеспечивает физические соединения, позволяя любому устройству соединяться по сети с помощью взаимосвязанных элементов, таких как коммутаторы и директора. SAN также можно рассматривать как расширение концепции шины хранения. Эта концепция позволяет устройствам хранения данных и серверам соединяться друг с другом с помощью аналогичных элементов, таких как локальные сети (LAN) и глобальные сети (WAN). SAN также включает в себя уровень управления, который организует соединения, элементы хранения и компьютерные системы. Этот уровень обеспечивает безопасную и надежную передачу данных.
Традиционно к серверу можно было подключить только ограниченное количество устройств хранения. В качестве альтернативы SAN обеспечивает гибкость сети, позволяя одному серверу или множеству разнородных серверов в нескольких центрах обработки данных совместно использовать общую утилиту хранения. SAN также устраняет традиционное выделенное соединение между сервером и хранилищем и концепцию, согласно которой сервер эффективно владеет устройствами хранения и управляет ими. Таким образом, сеть может включать в себя множество устройств хранения, включая диски, магнитные ленты и оптические накопители. Кроме того, утилита хранения может располагаться далеко от серверов, которые она использует.
Компоненты SAN
Инфраструктура хранения — это основа, на которой строится информация. Следовательно, инфраструктура хранения данных должна поддерживать бизнес-цели и бизнес-модель компании. Инфраструктура SAN обеспечивает повышенную доступность сети, доступность данных и управляемость системы. В этой среде простого развертывания большего количества и более быстрых устройств хранения данных недостаточно. Хорошая сеть хранения данных начинается с хорошего дизайна.
Основными компонентами SAN являются Fibre Channel, серверы, устройства хранения данных, а также сетевое оборудование и программное обеспечение.
Оптоволоконный канал
Первый элемент, который необходимо учитывать при реализации любой сети SAN, — это возможность подключения компонентов хранилища и сервера, которые обычно используют Fibre Channel. Сети SAN, такие как локальные сети, соединяют интерфейсы хранения во множество сетевых конфигураций и на большие расстояния.
Карта памяти — одно из самых надежных и долговечных устройств хранения данных, особенно если речь идет об ударопрочности. Когда вы используете SD, Micro SD, Mini SD или любой другой тип карты памяти для сохранения фотографий на камеру, вы можете быть почти уверены, что ваши фотографии в безопасности. Однако карты памяти не являются полностью безопасными — возможна потеря данных путем стирания и повреждения. Как пользоваться, хранить и ухаживать за картой памяти, чтобы она прослужила долго и чтобы ваши данные были в безопасности?
Что мы должны знать о карте памяти?
Во-первых, краткий обзор карты памяти и принципов ее работы. Карта памяти, казалось бы, простое устройство – пластиковый корпус, металлические разъемы и все.На самом деле в карте памяти очень много техники от флешки до контроллера и прочих деталей. Качество последнего определяет скорость и качество карты памяти.
Местоположения файлов на карте памяти упорядочены по таблице размещения файлов или сокращенно FAT. Проще говоря, это оглавление. Как это связано с работой карты памяти? При удалении фотографий или других данных с карты памяти файлы фактически не стираются, а вместо этого удаляется запись из таблицы содержания. Это означает, что компьютер или любое другое устройство не может показать расположение файла в папке, но фактически удаленный файл все еще находится на карте памяти. Фактически все данные будут храниться на карте памяти, пока вы ее не перезапишете. Поэтому, если вы случайно стерли нужные файлы, немедленно прекратите использование карты памяти. Восстановить удаленные данные можно с помощью специального программного обеспечения.
Как ухаживать за картой памяти и данными на ней?
Поскольку карты памяти в основном используются для хранения фотографий в камерах, мы в основном занимаемся фотографией. Ниже приведены несколько советов, которые помогут защитить ваши данные и продлить срок службы карты памяти.
Не удаляйте фотографии из камеры по отдельности
Камеры — отличные устройства для фотосъемки, но относительно плохие, когда дело доходит до обработки информации. Несмотря на то, что есть возможность удалять фотографии с камеры по отдельности, это один из самых простых и надежных способов испортить FAT.
Карты памяти стали настолько емкими и доступными, что, отправляясь на фотосессию, полезно иметь при себе дополнительную карту, которую можно использовать, когда первая карта будет заполнена. Еще лучше иметь несколько карт памяти меньшего объема, которые можно переключать — если у вас всего одна карта памяти на 128 ГБ и она выйдет из строя, вы можете потерять тысячи фотографий. Выбор и удаление фотографий должно происходить после их загрузки на компьютер. После этого отформатируйте карту памяти, и вы сможете продолжить ее использование.
Отформатируйте карту в камере, а не в компьютере
После того как вы загрузили файлы с карты памяти на компьютер для дальнейшей обработки, разумно отформатировать карту непосредственно перед ее повторным использованием. Часто карту форматируют сразу после переноса фотографий на компьютер. Мы не рекомендуем это. Вместо этого отформатируйте карту памяти в камере, которую собираетесь использовать. Каждая камера хранит фотографии по-разному, и процессы форматирования также различаются. Мы категорически не советуем ставить неотформатированную карту памяти из фотоаппарата Canon в фотоаппарат Nikon. Несмотря на то, что эта карта может работать и сохранять фотографии, настройки отличаются, что означает, что могут легко возникнуть проблемы с памятью.
Очищайте карту памяти после каждой фотосессии
После загрузки и резервного копирования фотографий рекомендуется отформатировать карту памяти. Это проще для вас, а также упрощает систему карт памяти — чем проще, тем лучше.
Используйте высококачественное устройство для чтения карт памяти
Бесполезно иметь дорогую камеру и высококачественную карту памяти, когда возможности устройства чтения карт памяти, подключенного к компьютеру, недостаточны. Устройство чтения карт памяти чаще несет ответственность за испорченные данные, чем сама карта памяти или камера.
Не используйте полную емкость карты памяти
Хотя карты памяти отличаются высоким качеством и относительной интеллектуальностью, никогда не рекомендуется использовать их полную емкость. Производительность любого устройства хранения страдает при полном заполнении данными, включая жесткие диски. Рекомендуется заполнить карту до 90%, а затем заменить ее на новую.
Не извлекайте карту памяти из камеры или устройства чтения карт памяти во время передачи или чтения данных
Если устройство находится в процессе сохранения или обработки данных, извлечение карты памяти может привести к частичной или даже полной потере данных. Даже если устройство подает сигнал об обработке данных мигающей лампочкой, разумно подождать несколько секунд после его остановки, чтобы убедиться, что процесс завершен. Если вы используете карту памяти в своем компьютере, разумно использовать опцию «Безопасное извлечение оборудования» в операционной системе Windows и функцию «Извлечь» в OSX. В случае с камерой всегда рекомендуется выключать камеру перед извлечением карты памяти.
Обновите программное обеспечение камеры
Время от времени производители камер выпускают обновления программного обеспечения. Выполняйте обновления, поскольку некоторые из них могут решить проблемы, влияющие на обмен данными между камерой и картой памяти.
Заряжайте аккумулятор камеры или заменяйте аккумуляторы до того, как они полностью разрядятся
Следите за уровнем заряда аккумулятора камеры, чтобы он не разрядился в процессе обработки или сохранения данных.Это помогает предотвратить как потерю последней сделанной фотографии, так и проблемы, которые могут возникнуть на карте из-за частично сохраненного файла.
Используйте только качественные карты памяти
Данные могут таинственным образом исчезнуть с небрендовых недорогих карт памяти, поэтому при покупке мы всегда рекомендуем выбирать карту памяти более высокого качества. Это не обязательно должна быть самая последняя позолоченная и очень быстрая модель, но это должен быть продукт надежного производителя, поскольку вы доверяете свои ценные фотографии этой карте. Продукция SanDisk и Lexar высоко ценится, но есть и другие хорошие производители — например, Transcend, Sony, Samsung и т.д.
Регулярное техническое обслуживание — само собой разумеется
Само собой разумеется, что в сегодняшнюю цифровую эпоху самые простые принципы хранения и обслуживания применимы и к картам памяти. Держите карты памяти сухими и чистыми, оберегайте их от экстремальных температур. Старайтесь не ронять, не сгибать и не ломать их и беречь от электромагнитных полей — данные флеш-памяти могут быть потеряны из-за магнита.
В заключение
Карта памяти — это простой и надежный способ хранения данных, в основном фотографий. Используйте карту памяти только для хранения данных с камеры или других устройств, а обработку данных оставьте на компьютере. Не забывайте регулярно форматировать карту памяти и делать это с помощью устройства, которое вы будете использовать для хранения новых данных. А если случится самое худшее и ваши данные исчезнут — немедленно прекратите использование карты памяти и свяжитесь с нами, мы поможем вам ее восстановить.
Мастерская Netiabi Computer Repair Shop предлагает услуги по восстановлению данных по разумным ценам в Таллинне, Эстония. Мы восстанавливаем данные со всех типов устройств хранения от различных производителей и обеспечиваем конфиденциальность данных. Свяжитесь с нами сегодня, и у вас будет больше шансов восстановить свои данные.
Читайте также: