Как менялась элементная база компьютеров от поколения к поколению

Обновлено: 03.07.2024

Персональный компьютер был представлен в 1975 году, что сделало компьютер доступным для частных лиц. До того времени компьютеры были очень большими и дорогими, эксплуатировались в основном крупными компаниями. Первые современные компьютеры были созданы в 1950-х годах и имеют большой теоретический и технический опыт. Использование компьютеров сильно повлияло на наше общество, на то, как мы ведем бизнес, общаемся, учимся и играем. Его использование распространилось на все грамотные районы мира, как и коммуникационные сети, у которых мало ограничений. Персональный компьютер вдохновил на создание новых отраслей, новых компаний и сделал их владельцев миллионерами и миллиардерами. Это также изменило английский язык и переориентировало власть во многих компаниях с мужчин, которые добывают деньги, на тех, кто создает продукт.

Фон

Люди придумали множество способов, помогающих им в вычислениях. До создания современной большой ЭВМ и ее усовершенствования, персонального компьютера, потребовался ряд открытий и изобретений. Десятичная система, двоичная математическая система и булева алгебра необходимы для работы компьютеров. Открытие электричества в восемнадцатом веке также имело важное значение, как и знание того, как его использовать в середине девятнадцатого века. Первый автоматический калькулятор появился в семнадцатом веке, используя для вычислений колеса и шестерни. В девятнадцатом веке Жозеф Жаккард (1752-1834) изобрел ткацкий станок, используя перфокарты, прикрепленные к иглам, чтобы сообщить станку, какие нитки использовать, в каких сочетаниях и цветах. С его помощью он плел сложные узоры на ткани, до сих пор называемые жаккардовыми узорами. В том же столетии Чарльз Бэббидж (1792-1871) разработал «Разностную машину» для вычисления и распечатки простых математических таблиц. Он улучшил его с помощью своей «Аналитической машины», используя перфокарты для выполнения сложных вычислений, хотя у него никогда не было средств на ее создание. Таким образом, к концу девятнадцатого века многие элементы, необходимые для работы современного компьютера, уже существовали: карты памяти, устройства ввода, математические системы, возможности хранения, питание и системы ввода.

Современная вычислительная машина зародилась в 1888 году, когда Герман Холлерит (1860–1929), американский изобретатель, изобрел счетную машину для составления таблиц данных переписи населения США за 1890 год. успешно работающий компьютер, дедушка современных компьютеров. Более 50 из них были построены и проданы. Компания Холлерита, Tabulating Machine Company, положила начало компьютерному бизнесу в Соединенных Штатах. Когда компания Hollerith была продана в 1911 году, название было изменено на Computing-Tabulating-Recording Machine Company. В 1924 году эта компания стала International Business Machines Corporation (IBM). IBM почти 25 лет доминировала на рынке офисного оборудования благодаря своим калькуляторам, электрическим пишущим машинкам и часам.

Цифровые электронно-вычислительные машины появились в 1939 и 1944 годах, но это были лишь промежуточные этапы развития компьютеров. Эти огромные и дорогие компьютеры использовались крупными компаниями для быстрого и точного ведения бухгалтерского учета и математики. Это были аналоговые компьютеры, управляемые реле или переключателями, и для их охлаждения требовались огромные блоки кондиционирования воздуха. Из-за этого, а также стоимости одной единицы использование компьютеров было очень ограничено. Первый электронный цифровой компьютер общего назначения ENIAC был построен в 1939 году. Его основными компонентами были электронные лампы, устройства, управляющие электрическими токами или сигналами. В то время эти лампы обычно питали радиоприемники и телевизоры. Программирование ENIAC было долгим и утомительным процессом.

Новый более совершенный компьютер был построен в 1951 году компанией Remington Rand Corporation. Названный UNIVAC, это был первый коммерчески доступный компьютер. Он был очень дорогим, очень большим и по-прежнему питался от электронных ламп. IBM произвела свой первый большой мейнфрейм в 1952 году и предложила его для продажи компаниям, правительствам и военным. В течение почти 30 лет IBM была самой успешной компанией в области информационных технологий. Изобретение транзистора в 1947 году положило начало развитию небольших компьютеров и персональных компьютеров. Транзистор, созданный тремя учеными из Bell Labs, за что они получили Нобелевскую премию, представляет собой устройство, которое выполняет работу вакуумной лампы в разы меньше ее размера. Он прочный, без движущихся частей, долговечен и начинает работать сразу же, без необходимости прогрева, как вакуумная трубка. Транзисторы различаются по размеру от нескольких сантиметров в ширину до тысячных долей миллиметра. Они меньше, легче, дешевле в производстве, дешевле в использовании и более надежны, чем трубки. Они потребляют очень мало энергии и к началу 1960-х заменили лампы. Транзисторы управляют всеми операциями в компьютере, а также периферийными устройствами.

Первый полностью транзисторный большой компьютер был построен корпорацией Control Data в 1958 году, а IBM представила собственную версию в 1959 году. Это были дорогие машины, предназначенные для решения крупных корпоративных задач. Все основные части современного персонального компьютера были изобретены к началу 1960-х годов. Компьютерный чип — это крошечный кусочек кремния, неметаллического элемента, со встроенными в него сложными электронными схемами. Интегральная схема соединяет транзисторы вместе, чтобы создать полную схему на одном кристалле. Микропроцессоры — это группы микросхем, которые выполняют вычисления и содержат память компьютера. С этими устройствами рабочие части компьютера могут содержаться на нескольких компьютерных чипах. Это новшество продолжало уменьшать размеры компьютеров. Очень большие компьютеры, такие как машины Cray и IBM, назывались мейнфреймами или миникомпьютерами. К концу 1960-х многие отрасли и предприятия стали полагаться на компьютеры и компьютерные сети, и персональный компьютер был не за горами.

Помимо оборудования, из которого состоит компьютер, самым важным элементом, обеспечивающим его работу, является программа, которая указывает ему, что делать. Первым программистом была Ада Байрон (1815-1852), дочь британского поэта лорда Байрона. Она создала теоретические шаги для использования в машинах Бэббиджа. Бейсик был первым современным языком программирования, простой системой, которую мог выучить почти каждый. Вскоре потребовалось создавать более сложные наборы языков и инструкций, и это называлось программным обеспечением. Корпорация Microsoft была основана в 1976 году Биллом Гейтсом (1955-) для создания и продажи программного обеспечения для персональных компьютеров. По мере увеличения мощности, скорости и разнообразия выполняемых ими функций компьютеров также увеличивались размер и сложность программ. Многие современные программы содержат десятки миллионов строк инструкций в сложных кодах. Некоторые из них необходимы для работы машины и встроены в нее. В первых компьютерах пользователь должен был создавать свою собственную программу, но сегодня почти невозможно купить компьютер, который может быть запрограммирован человеком. Программное обеспечение поставляется на компьютер в виде дискет или компакт-дисков или уже установлено на компьютере. Он позволяет пользователю создавать письменные документы, отображать изображения, звук, играть в игры, создавать диаграммы и получать доступ к Интернету.

Влияние

Огромные изменения произошли за последние 30 лет в результате развития компьютеров в целом и персональных компьютеров в частности. Это творение считается одним из самых важных изобретений двадцатого века. Компьютер используется в правительстве, правоохранительных органах, банковском деле, бизнесе, образовании и торговле. Это стало важным в областях научных, политических и социальных исследований, а также в аспектах медицины и права. Обращение с данными и их хранение затрагивают всех. Эти события имеют негативные последствия. Есть те, кто занимается мошенническими действиями, злонамеренным озорством и обманом. Эта деятельность породила потребность в компьютерной безопасности и новой категории технических борцов с преступностью.

Сначала персональный компьютер определялся как машина, которую может использовать и программировать один человек одновременно и которая может поместиться на столе. Он был недорогим, доступным, достаточно простым для использования большинством людей и достаточно маленьким, чтобы его можно было транспортировать. Утверждений об идентичности первого персонального компьютера много, и они зависят от определения. Одним из первых небольших компьютеров был настольный компьютер, созданный Hewlett Packard в 1972 году. В нем было все необходимое: язык, запоминающее устройство, клавиатура и дисплейный терминал. Однако, поскольку он был построен для ученых и инженеров, он не был доступен на обычном рынке. Первым доступным для покупки персональным компьютером был Altair 8800. Он был представлен, описан и изображен в январском номере журнала Popular Electronics за 1975 год. Он поставлялся в виде набора, готового к сборке, и предназначался для любителей, которым нравилось собирать собственные радиоприемники и другие электронные устройства.

Первым полностью собранным и выставленным на продажу персональным компьютером был Apple I. Он был собран 25-летним бросившим колледж Стивеном Возняком (1950– ) в своем гараже в Саннивейле, Калифорния. Вместе со своим другом Стивеном Джобсом (1955 г.р.) Возняк продемонстрировал новую машину на первой компьютерной выставке в Атлантик-Сити в 1976 году. Она поразила зрителей своими маленькими, компактными размерами и скоростью, но не продала. Возняк переработал его. Когда был представлен Apple II в пластиковом корпусе, с цветной графикой, BASIC и бухгалтерской программой VisiCalc, количество заказов резко возросло. Ни одна известная компания не хотела вкладывать деньги в машину, собранную в гараже, поэтому Джобс и Возняк в 1977 году создали компанию Apple Computer Company. Они переехали из гаража и наняли людей для производства машины.

Вскоре многие люди и компании вышли на рынок персональных компьютеров.Некоторые компьютеры были разработаны для знающих любителей, в то время как другие последовали примеру Apple. Эти компьютеры были созданы для тех, кто хотел, чтобы компьютер что-то делал, и не заботился о том, как он работает. Тэнди (сегодня называется Radio Shack); Texas Instruments, создавшая первый электронный калькулятор; Коммодор; и другие компании начали производить персональные компьютеры для продажи. Кто-то преуспел, кто-то потерпел неудачу.

Когда IBM наконец вышла на рынок персональных компьютеров в 1981 году, это оказало немедленное влияние, хотя и имело серьезные ограничения. В его компьютере не было жесткого диска, программного обеспечения или графики. Но у него были волшебные буквы спереди — IBM. Многие заказчики считали, что если IBM, уже известная как «Большая синяя», построила компьютер, он должен быть хорошим. Это даже убедило многих людей в том, что, поскольку IBM производит персональные компьютеры, они останутся здесь навсегда. IBM продала 20 000 машин за первые несколько месяцев и могла бы продать 50 000, но они не были готовы производить столько. Его дизайну и усовершенствованиям последовали многие другие производители. Компьютеры IBM или их клоны сейчас доминируют на компьютерном рынке.

Подобно тому, как немногие владельцы компьютеров программируют свои машины, мало кто их и транспортирует. Для этого появился новый тип персонального компьютера: портативный компьютер. Он популярен среди студентов, исследователей и деловых путешественников, как и новый карманный компьютер или карманный компьютер.

Большие мэйнфреймы изменили методы работы и ведения учета в компаниях. Персональные компьютеры изменили то, как люди вели бизнес, вели семейные записи, платили налоги, развлекались и писали письма. Даже те, кто боится или избегает компьютеров, используют их или контактируют с ними каждый день. Когда они используют банкомат для внесения или снятия денег, они используют специальный компьютер. При оплате продуктов или бензина кредитной картой задействуется компьютер. Внутренние системы их автомобилей управляются компьютерами. Компьютерная грамотность стала необходимым навыком для технических или научных профессий и становится требованием для многих профессий, таких как банковские служащие, продавцы, библиотекари и даже официанты в ресторанах, которые используют компьютеры в своей повседневной работе.

Сегодня определение персонального компьютера изменилось из-за разнообразного использования, новых систем и новых подключений к более крупным сетям. Персональный компьютер теперь используется одним оператором в офисе, библиотеке или дома. Большинство персональных домашних компьютеров используются людьми для ведения бухгалтерского учета, игр или обработки текстов. Они стали устройством, которое обеспечивает развлечение, а также информацию. Они доступны по цене, и каждый может научиться ими пользоваться. Все больше людей занимаются бизнесом дома на своих персональных компьютерах или на компьютере, предоставленном компанией, и им нужно ездить на работу всего несколько дней в неделю.

Персональные компьютеры также широко используются небольшими предприятиями, такими как рестораны, химчистки, мотели и ремонтные мастерские. Они часто связаны друг с другом в сети в более крупных компаниях, таких как торговые палаты, издательские компании или школы. Эти компьютеры выглядят и ведут себя как персональные компьютеры, даже если они подключены к большим компьютерам или сетям. Операторы больше не могут их программировать, и их редко можно транспортировать.

Важность и влияние персонального компьютера к началу двадцать первого века связаны, с одной стороны, с развитием компьютера, а с другой — с созданием новой системы коммуникаций — Интернета, — которая зависит от личного компьютеры и без них не смогли бы получить столь широкое распространение. Вместе компьютеры и Интернет — с сопутствующими ему Всемирной паутиной и электронной почтой — оказали огромное влияние на общество, и каждый день происходят радикальные изменения в том, как образованные люди во всем мире общаются, делают покупки, ведут бизнес и играть.

Интернет, всемирная паутина и электронная почта на самом деле представляют собой три отдельных объекта, взаимосвязанных и взаимозависимых. Интернет — это сеть компьютеров, раскинувшаяся по всему миру и состоящая из телефонных линий, серверов, браузеров и клиентов. Это началось во время холодной войны в коммуникационной сети, связывающей исследователей Министерства обороны США (DOD) и военных подрядчиков. В 1969 году было жизненно необходимо иметь возможность поддерживать связь в случае ядерной атаки. Когда эта напряженность ослабла, сеть продолжала оставаться удобным способом общения с исследовательскими группами и компаниями по всему миру. Эта сеть была разработана в Агентстве перспективных исследовательских проектов и первоначально называлась ARPAnet.

Сначала ARPAnet в основном использовался для электронной почты, или электронной почты, начиная с 1965 по 1971 год. Потребовались годы усовершенствования и расширения коммуникационных возможностей, таких как волоконно-оптические кабели для телефонных линий, чтобы пользователи могли общаться с друг друга, несмотря на разные типы компьютеров, рабочие языки или скорость.

ARPAnet продолжал расти и по-прежнему использовался в основном военными подрядчиками и министерством обороны США. В 1970-х годах он был открыт для невоенных пользователей, в основном для университетов. Первый хост был установлен в Калифорнийском университете в Лос-Анджелесе, второй — в Стэнфорде, оба в Калифорнии. К 1971 году было создано программное обеспечение, позволяющее отправлять сообщения на любой компьютер и с него. Электронная почта тогда стала доступной для всех. Международные соединения были доступны к 1973 году. В 1983 году сеть ARPAnet была разделена на военную и гражданскую части, а гражданская сеть получила название Интернет. Теперь он определяется как физическая структура сети — ее телефонные линии, серверы и клиенты.

Всемирная паутина расширяет возможности Интернета. Это набор сайтов и информации, к которым можно получить доступ через эти сайты. Тим Бернерс-Ли работал в CERN в Швейцарии и в 1989 году написал программное обеспечение, позволяющее физикам, работающим в области высоких энергий, сотрудничать с физиками в любой точке мира. Это было началом Всемирной паутины, которая стала неотъемлемой частью Интернета в 1991 году. Сеть обладает мультимедийными возможностями, предоставляет изображения, звук, движение и текст. Он состоит из серии электронных адресов или веб-сайтов. Интернет и Всемирная паутина стали проще и полезнее, когда были изобретены веб-браузеры для поиска, извлечения и отображения этой информации как в виде текста, так и в виде изображений.

По некоторым оценкам, на заре двадцать первого века насчитывалось около 40 миллионов персональных компьютеров, и большинство из них были подключены к Интернету. Ни один бизнес, надеющийся продавать товары широкой аудитории в новом столетии, не сможет игнорировать персональные компьютеры или Интернет. Любому лицу, желающему получить доступ к широкому спектру информации или приобрести товары и услуги, потребуется для этого персональный компьютер, подключенный к Интернету.

Персональные компьютеры изменили наши методы ведения бизнеса. Компьютеры создали новые предприятия и изменили другие. Они изменили фокус в залах заседаний с людей, которые обеспечивают деньги, на тех, кто создает или принимает решения о новом продукте. Это также сделало миллионерами и миллиардерами тех, кто рано начал заниматься бизнесом. Несомненно, последствия социальной, экономической и культурной революции, вызванной развитием персональных компьютеров, будут ощущаться и в двадцать первом веке.

ЛИНДАЛ БЕЙКЕР ЛАНДУЭР

Дополнительная литература

Киддер, Трейси. Душа новой машины. Нью-Йорк: Avon Books, 1981.

Окман, Роберт Л. Компьютерный треугольник: оборудование, программное обеспечение и люди. Нью-Йорк: Wiley, 1995.

Шуркин, Джоэл. Двигатели разума: эволюция компьютеров от мэйнфреймов к микропроцессорам. Нью-Йорк: Norton Publishers, 1996.

Вейт, Стэн. История персонального компьютера Стэна Вейта. Эшвилл, Северная Каролина: WorldComm Press, 1993.

Женщина работает в установка с двумя мониторами, представляющая последнее из 5 поколений компьютеров». ширина =

История развития компьютеров – это раздел компьютерных наук, который часто используется для обозначения различных поколений вычислительных устройств . Каждое поколение компьютеров характеризуется значительным технологическим развитием, которое коренным образом изменило способ работы компьютеров.

Большинство крупных разработок, произошедших с 1940-х годов до наших дней, привели к созданию все более компактных, дешевых, мощных и эффективных вычислительных машин и технологий, что позволило сократить объем памяти и повысить портативность.

Что такое 5 поколений компьютеров?

В этом учебном пособии Webopedia вы узнаете больше о каждом из пяти поколений компьютеров и достижениях в области технологий, которые привели к разработке многих вычислительных устройств, которые мы используем сегодня.

Наш путь к пяти поколениям компьютеров начинается в 1940 году со схем на электронных лампах и продолжается до наших дней и далее с системами и устройствами искусственного интеллекта (ИИ).

Давайте посмотрим…

Контрольный список 5 поколений компьютеров

  • Начало работы: ключевые термины, которые нужно знать
  • Первое поколение: вакуумные лампы
  • Второе поколение: транзисторы
  • Третье поколение: интегральные схемы
  • Четвертое поколение: микропроцессоры
  • Пятое поколение: искусственный интеллект

Начало работы: ключевые термины, которые нужно знать

Следующие определения технологий помогут вам лучше понять пять поколений вычислительной техники:

Первое поколение: электронные лампы (1940–1956)

Первые компьютерные системы использовали электронные лампы в качестве схем и магнитные барабаны в качестве основной памяти , и они часто были огромными и занимали целые комнаты.Эти компьютеры были очень дорогими в эксплуатации, и в дополнение к потреблению большого количества электроэнергии первые компьютеры выделяли много тепла, что часто было причиной сбоев в работе. Максимальная емкость внутренней памяти составляла 20 000 символов.

Компьютеры первого поколения полагались на машинный язык , язык программирования самого низкого уровня, понятный компьютерам, для выполнения операций, и они могли решать только одну проблему за раз. Операторам требовалось несколько дней или даже недель, чтобы установить новую проблему. Ввод осуществлялся с помощью перфокарт и бумажной ленты, а вывод отображался на распечатках.

Именно в этом поколении была представлена ​​архитектура фон Неймана, которая отображает архитектуру дизайна электронного цифрового компьютера. Позже образцами вычислительной техники первого поколения стали компьютеры UNIVAC и ENIAC, изобретенные Дж. Преспером Эккертом. UNIVAC был первым коммерческим компьютером, поставленным бизнес-клиенту, Бюро переписи населения США, в 1951 году.

Компьютер UNIVAC в Бюро переписи населения. Источник изображения: Бюро переписи населения США.

Второе поколение: транзисторы (1956–1963)

Мир увидит, как транзисторы заменят электронные лампы во втором поколении компьютеров. Транзистор был изобретен в Bell Labs в 1947 году, но не нашел широкого применения в компьютерах до конца 1950-х годов. Компьютеры этого поколения также включали усовершенствования аппаратного обеспечения, такие как память на магнитных сердечниках, магнитная лента и магнитный диск.

Транзистор намного превосходил вакуумную лампу, благодаря чему компьютеры стали меньше, быстрее, дешевле, энергоэффективнее и надежнее, чем их предшественники первого поколения. Хотя транзистор по-прежнему выделял много тепла, что приводило к повреждению компьютера, это был значительный шаг вперед по сравнению с электронной лампой. Компьютер второго поколения по-прежнему полагался на перфокарты для ввода и распечатки для вывода.

Ранний транзистор Philco (1950-е гг.). Источник изображения: коллекционные винтажные компьютерные чипы

От двоичного файла к сборке

Компьютеры второго поколения перешли от загадочного двоичного языка к символическим языкам или языкам ассемблера, что позволило программистам задавать инструкции словами. В то время также разрабатывались языки программирования высокого уровня, такие как ранние версии COBOL и FORTRAN. Это были также первые компьютеры, которые хранили свои инструкции в своей памяти, которые перешли от магнитного барабана к технологии магнитного сердечника.

Первые компьютеры этого поколения были разработаны для атомной энергетики.

Третье поколение: интегральные микросхемы (1964–1971 гг.)

Разработка интегральной схемы стала отличительной чертой третьего поколения компьютеров. Транзисторы были миниатюризированы и размещены на кремниевых микросхемах, называемых полупроводниками, что значительно увеличило скорость и эффективность компьютеров.

Вместо перфокарт и распечаток пользователи будут взаимодействовать с компьютером третьего поколения через клавиатуру и мониторы, а также через интерфейс с операционной системой, что позволит устройству одновременно запускать множество различных приложений с помощью центральной программы, отслеживающей память. Компьютеры впервые стали доступны для массовой аудитории, потому что они были меньше и дешевле, чем их предшественники.

Знаете ли вы… ? Микросхемы с интегральной схемой (ИС) — это небольшие электронные устройства, изготовленные из полупроводникового материала. Первая интегральная схема была разработана в 1950-х годах Джеком Килби из Texas Instruments и Робертом Нойсом из Fairchild Semiconductor.

Четвертое поколение: микропроцессоры (1971–настоящее время)

Микропроцессор положил начало четвертому поколению компьютеров, так как тысячи интегральных схем были построены на одном кремниевом чипе. Технологии первого поколения, заполнявшие всю комнату, теперь могли умещаться на ладони. Микросхема Intel 4004, разработанная в 1971 году, объединила все компоненты компьютера, от центрального процессора и памяти до элементов управления вводом/выводом, на одной микросхеме.

В 1981 году IBM представила свой первый персональный компьютер для домашних пользователей, а в 1984 году Apple представила Macintosh. Микропроцессоры также переместились из сферы настольных компьютеров во многие сферы жизни, поскольку микропроцессорные микросхемы стали использоваться во все большем количестве повседневных продуктов.

По мере того, как эти маленькие компьютеры становились все более мощными, их можно было объединять в сети, что в конечном итоге привело к развитию Интернета. На каждом компьютере четвертого поколения также разрабатывались графические интерфейсы , мышь и портативные устройства.

Первый микропроцессор Intel, 4004, был задуман Тедом Хоффом и Стэнли Мейзором. Источник изображения: Хронология Intel (PDF)

Пятое поколение: искусственный интеллект (настоящее и будущее)

Компьютерная технология пятого поколения, основанная на искусственном интеллекте, все еще находится в разработке, хотя некоторые приложения, такие как распознавание голоса, используются и сегодня. Использование параллельной обработки и сверхпроводников помогает сделать искусственный интеллект реальностью. На данный момент это также лучшее поколение для упаковки большого объема памяти в компактное и портативное устройство.

Квантовые вычисления, молекулярные и нанотехнологии радикально изменят облик компьютеров в ближайшие годы. Цель вычислений пятого поколения – разработать устройства, которые будут реагировать на ввод на естественном языке и способны к обучению и самоорганизации.


Вакуумная трубка — электронное устройство, управляющее потоком электронов в вакууме. Он использовался в качестве переключателя, усилителя или экрана дисплея во многих старых моделях радиоприемников, телевизоров, компьютеров и т. д.

Транзистор — электронный компонент, который можно использовать как усилитель или как переключатель. Он используется для управления потоком электроэнергии в радиоприемниках, телевизорах, компьютерах и т. д.

< бр />

Интегральная схема (ИС) – небольшая электронная схема, напечатанная на микросхеме (обычно кремниевой), которая содержит множество собственных элементов схемы (например, транзисторы, диоды, резисторы и т. д.).


Микропроцессор – электронный компонент, находящийся на интегральной схеме, которая содержит центральный процессор компьютера (ЦП) и другие связанные схемы.

ЦП (центральный процессор). Его часто называют мозгом или двигателем компьютера, в котором выполняется большая часть обработки и операций (ЦП является частью микропроцессора).


Магнитный барабан — цилиндр, покрытый магнитным материалом, на котором могут храниться данные и программы.

Магнитный сердечник — для хранения информации используются массивы небольших колец намагниченного материала, называемых сердечниками.

< бр />

Машинный язык — низкоуровневый язык программирования, состоящий из набора двоичных цифр (единиц и нулей), которые компьютер может читать и понимать.

Язык ассемблера похож на машинный язык, понятный компьютеру, за исключением того, что язык ассемблера использует сокращенные слова (например, ADD, SUB, DIV…) вместо чисел (0 и 1).

Память — физическое устройство, которое используется для хранения данных, информации и программ в компьютере.

Искусственный интеллект (ИИ) – область информатики, которая занимается моделированием и созданием интеллектуальных машин или интеллектуальным поведением компьютеров (они думают, учатся, работают и реагируют, как люди).

Классификация поколений компьютеров

Эволюция компьютерных технологий часто делится на пять поколений.

Пять поколений компьютеров < td style="width: 33,3333%; height: 16px;">Третье поколение < /tr>
Поколения компьютеров Временная шкала поколений Развитие оборудования
Первое поколение 1940–1950-е Вакуумная лампа
Второе поколение 1950–1960-е годы Транзистор
1960–1970-е На основе интегральной схемы
Четвертое поколение 1970-е — настоящее время Микропроцессор
Пятое поколение Настоящее и будущее На основе искусственного интеллекта

Основные характеристики компьютеров первого поколения (1940–1950-е годы)

  • Основной электронный компонент — вакуумная лампа.
  • Основная память – магнитные барабаны и магнитные ленты.
  • Язык программирования — машинный язык
  • Электроэнергия — потребляет много электроэнергии и выделяет много тепла.
  • Скорость и размер — очень медленный и очень большой по размеру (часто занимает всю комнату).
  • Устройства ввода/вывода — перфокарты и бумажная лента.
  • Примеры: ENIAC, UNIVAC1, IBM 650, IBM 701 и т. д.
  • Количество — в период с 1942 по 1963 год было произведено около 100 различных ламповых компьютеров.

Основные характеристики компьютеров второго поколения (1950–1960-е годы)


Основные характеристики компьютеров третьего поколения (1960–1970-е годы)

  • Основной электронный компонент — интегральные схемы (ИС)
  • Память — большой магнитный сердечник, магнитная лента/диск
  • Язык программирования — язык высокого уровня (FORTRAN, BASIC, Pascal, COBOL, C и т. д.)
  • Размер — меньше, дешевле и эффективнее компьютеров второго поколения (их называли миникомпьютерами).
  • Скорость — повышение скорости и надежности (по сравнению с компьютерами второго поколения).
  • Устройства ввода/вывода — магнитная лента, клавиатура, монитор, принтер и т. д.
  • Примеры: IBM 360, IBM 370, PDP-11, UNIVAC 1108 и т. д.

Основные характеристики компьютеров четвертого поколения (с 1970-х по настоящее время)

  • Основной электронный компонент — сверхбольшая интеграция (СБИС) и микропроцессор.
  • СБИС — тысячи транзисторов на одном микрочипе.
  • Память — полупроводниковая память (такая как RAM, ROM и т. д.)
    • ОЗУ (оперативное запоминающее устройство) — тип хранилища данных (элемент памяти), используемый в компьютерах для временного хранения программ и данных (энергозависимых: его содержимое теряется при выключении компьютера).
    • ПЗУ (постоянная память) — тип хранилища данных, используемый в компьютерах, который постоянно хранит данные и программы (энергонезависимое: его содержимое сохраняется даже при выключении компьютера).
    • Сочетание языков третьего и четвертого поколения.
    • Сеть — группа из двух или более компьютерных систем, связанных вместе.
    • Примеры: IBM PC, STAR 1000, APPLE II, Apple Macintosh и т. д.


    Основные характеристики компьютеров пятого поколения (настоящее и будущее)


    • Основной электронный компонент: основан на искусственном интеллекте, использует технологию сверхбольшой интеграции (ULSI) и метод параллельной обработки.
      • ULSI — миллионы транзисторов на одном микрочипе.
      • Метод параллельной обработки — использование двух или более микропроцессоров для одновременного выполнения задач.

      Три женщины сидят за столом с ноутбуками.

      Компьютер – менее чем за 100 лет эта удивительная технология прошла путь от технологии, предназначенной только для правительства/бизнеса, до повсеместного использования в домах, на рабочих местах и ​​в карманах людей.



      Атрибуция мультимедиа

        © betexion (лицензия Pixabay) © rrae (лицензия Pixabay) © OpenClipart-Vectors (лицензия Pixabay) © PublicDomainPictures (лицензия Pixabay) © JimBear (лицензия Pixabay) © Ani Niow находится под лицензией CC BY-NC-SA (Attribution NonCommercial ShareAlike) лицензия © Huw Pritchard находится под лицензией CC BY-NC-SA (Attribution NonCommercial ShareAlike) © Christiaan Colen находится под лицензией CC BY-SA (Attribution ShareAlike) © yum9me находится под лицензией CC BY-NC-ND (Attribution Некоммерческая (без деривативов) лицензия

      электронное устройство, управляющее потоком электронов в вакууме. Он использовался в качестве переключателя, усилителя или экрана дисплея во многих старых моделях радиоприемников, телевизоров, компьютеров и т. д.

      электронный компонент, который можно использовать в качестве усилителя или переключателя.Он используется для управления потоком электроэнергии в радиоприемниках, телевизорах, компьютерах и т. д.

      небольшая электронная схема, напечатанная на микросхеме (обычно сделанной из кремния), которая содержит множество собственных элементов схемы (например, транзисторы, диоды, резисторы и т. д.).

      электронный компонент, находящийся на интегральной схеме, которая содержит центральный процессор компьютера (ЦП) и другие связанные схемы.

      Мозг или двигатель компьютера, в котором происходит большая часть обработки и операций.

      цилиндр, покрытый магнитным материалом, на котором можно хранить данные и программы.

      использует массивы маленьких колец намагниченного материала, называемых ядрами, для хранения информации.

      язык программирования низкого уровня, состоящий из набора двоичных цифр (единиц и нулей), которые компьютер может читать и понимать.

      физическое устройство, используемое для хранения данных, информации и программ на компьютере.

      область информатики, которая занимается моделированием и созданием интеллектуальных машин или интеллектуальным поведением компьютеров (они думают, учатся, работают и реагируют как люди).

      Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

      Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

      Разностная машина

      цифровой компьютер, любое из класса устройств, способных решать задачи путем обработки информации в дискретной форме. Он работает с данными, включая величины, буквы и символы, которые выражены в двоичном коде, т. е. с использованием только двух цифр 0 и 1. Считая, сравнивая и манипулируя этими цифрами или их комбинациями в соответствии с набором инструкций, хранимых в своей памяти цифровая вычислительная машина может выполнять такие задачи, как управление производственными процессами и регулирование работы машин; анализировать и систематизировать огромные объемы бизнес-данных; и моделировать поведение динамических систем (например, глобальные погодные условия и химические реакции) в научных исследованиях.

      Далее следует краткое описание цифровых компьютеров. Полное описание см. в см. информатике: основные компьютерные компоненты.

      Вы используете его прямо сейчас. Но вы должны пройти этот тест, чтобы узнать, что вы на самом деле знаете об Интернете.

      Функциональные элементы

      Типичная цифровая компьютерная система имеет четыре основных функциональных элемента: (1) оборудование ввода-вывода, (2) основную память, (3) блок управления и (4) арифметико-логическое устройство. Любое из ряда устройств используется для ввода данных и программных инструкций в компьютер и для получения доступа к результатам операции обработки. Общие устройства ввода включают клавиатуры и оптические сканеры; устройства вывода включают принтеры и мониторы. Информация, полученная компьютером от своего блока ввода, сохраняется в основной памяти или, если не для непосредственного использования, во вспомогательном запоминающем устройстве. Блок управления выбирает и вызывает инструкции из памяти в соответствующей последовательности и передает соответствующие команды соответствующему блоку. Он также синхронизирует различные рабочие скорости устройств ввода и вывода со скоростью арифметико-логического устройства (ALU), чтобы обеспечить правильное перемещение данных по всей компьютерной системе. ALU выполняет арифметические и логические алгоритмы, выбранные для обработки входящих данных, с чрезвычайно высокой скоростью — во многих случаях за наносекунды (миллиардные доли секунды). Основная память, блок управления и АЛУ вместе составляют центральный процессор (ЦП) большинства цифровых компьютерных систем, а устройства ввода-вывода и вспомогательные запоминающие устройства составляют периферийное оборудование.

      Разработка цифрового компьютера

      Блез Паскаль из Франции и Готфрид Вильгельм Лейбниц из Германии изобрели механические цифровые вычислительные машины в 17 веке. Однако обычно считается, что английский изобретатель Чарльз Бэббидж создал первый автоматический цифровой компьютер. В 1830-х годах Бэббидж разработал свою так называемую аналитическую машину, механическое устройство, предназначенное для объединения основных арифметических операций с решениями, основанными на собственных вычислениях. Планы Бэббиджа воплотили в себе большинство фундаментальных элементов современного цифрового компьютера. Например, они призывали к последовательному управлению, т. е. программному управлению, которое включало ветвление, циклирование, а также арифметические и запоминающие устройства с автоматической распечаткой. Однако устройство Бэббиджа так и не было завершено и было забыто до тех пор, пока его труды не были заново открыты более века спустя.

      Огромное значение в эволюции цифрового компьютера имели работы английского математика и логика Джорджа Буля.В различных эссе, написанных в середине 1800-х годов, Буль обсуждал аналогию между символами алгебры и символами логики, используемыми для представления логических форм и силлогизмов. Его формализм, работающий только с 0 и 1, стал основой того, что сейчас называется булевой алгеброй, на которой основаны теория и процедуры компьютерного переключения.

      Джону В. Атанасову, американскому математику и физику, приписывают создание первого электронного цифрового компьютера, который он построил с 1939 по 1942 год с помощью своего аспиранта Клиффорда Э. Берри. Конрад Цузе, немецкий инженер, фактически изолированный от других разработок, в 1941 году завершил строительство первой действующей вычислительной машины с программным управлением (Z3). В 1944 году Ховард Эйкен и группа инженеров корпорации International Business Machines (IBM) завершили работу над Harvard Mark I – машиной, операции обработки данных которой контролировались главным образом электрическими реле (коммутационными устройствами).

      Клиффорд Э. Берри и компьютер Атанасова-Берри

      Клиффорд Э. Берри и компьютер Атанасова-Берри, или ABC, c. 1942 г. ABC, возможно, был первым электронным цифровым компьютером.

      С момента разработки Harvard Mark I цифровой компьютер развивался быстрыми темпами. Последовательность достижений в компьютерном оборудовании, главным образом в области логических схем, часто делится на поколения, при этом каждое поколение включает группу машин, использующих общую технологию.

      В 1946 году Дж. Преспер Эккерт и Джон У. Мочли из Пенсильванского университета сконструировали ENIAC (аббревиатура от eэлектронный nмерический i). интегратор ии cкомпьютер), цифровая машина и первый электронный компьютер общего назначения. Его вычислительные возможности были заимствованы у машины Атанасова; оба компьютера включали электронные лампы вместо реле в качестве активных логических элементов, что привело к значительному увеличению скорости работы. Концепция компьютера с хранимой программой была представлена ​​в середине 1940-х годов, а идея хранения кодов инструкций, а также данных в электрически изменяемой памяти была реализована в EDVAC (electronic, d создать vпеременный аавтоматический cкомпьютер).

      Manchester Mark I

      Второе поколение компьютеров появилось в конце 1950-х годов, когда в продажу поступили цифровые машины, использующие транзисторы. Хотя этот тип полупроводникового устройства был изобретен в 1948 году, потребовалось более 10 лет опытно-конструкторских работ, чтобы сделать его жизнеспособной альтернативой электронной лампе. Небольшой размер транзистора, его большая надежность и относительно низкое энергопотребление значительно превосходили лампу. Его использование в компьютерных схемах позволило производить цифровые системы, которые были значительно эффективнее, меньше и быстрее, чем их предки первого поколения.

      первый транзистор

      Транзистор был изобретен в 1947 году в Bell Laboratories Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли.

      В конце 1960-х и 1970-х годах компьютерное оборудование стало еще более значительным. Первым было изготовление интегральной схемы, твердотельного устройства, содержащего сотни транзисторов, диодов и резисторов на крошечном кремниевом чипе. Эта микросхема сделала возможным производство мейнфреймов (крупномасштабных) компьютеров с более высокими рабочими скоростями, мощностью и надежностью при значительно меньших затратах. Другим типом компьютеров третьего поколения, которые были разработаны в результате микроэлектроники, были миникомпьютеры, машина значительно меньшего размера, чем стандартный мэйнфрейм, но достаточно мощная, чтобы управлять приборами целой научной лаборатории.

      интегральная схема

      Развитие крупномасштабной интеграции (БИС) позволило производителям оборудования разместить тысячи транзисторов и других связанных компонентов на одном кремниевом чипе размером с ноготь ребенка. Такая микросхема дала два устройства, которые произвели революцию в компьютерной технике. Первым из них был микропроцессор, представляющий собой интегральную схему, содержащую все арифметические, логические и управляющие схемы центрального процессора.Его производство привело к разработке микрокомпьютеров, систем размером не больше портативных телевизоров, но со значительной вычислительной мощностью. Другим важным устройством, появившимся из схем БИС, была полупроводниковая память. Это компактное запоминающее устройство, состоящее всего из нескольких микросхем, хорошо подходит для использования в миникомпьютерах и микрокомпьютерах. Кроме того, он находит применение во все большем числе мейнфреймов, особенно в тех, которые предназначены для высокоскоростных приложений, из-за его высокой скорости доступа и большой емкости памяти. Такая компактная электроника привела в конце 1970-х годов к разработке персонального компьютера, цифрового компьютера, достаточно небольшого и недорогого, чтобы им могли пользоваться обычные потребители.

      микропроцессор

      К началу 1980-х интегральные схемы продвинулись до очень крупномасштабной интеграции (СБИС). Этот дизайн и технология производства значительно увеличили плотность схем микропроцессора, памяти и вспомогательных микросхем, т. Е. Те, которые служат для сопряжения микропроцессоров с устройствами ввода-вывода. К 1990-м годам некоторые схемы СБИС содержали более 3 миллионов транзисторов на кремниевой микросхеме площадью менее 0,3 квадратных дюйма (2 квадратных см).

      Цифровые компьютеры 1980-х и 90-х годов, использующие технологии БИС и СБИС, часто называют системами четвертого поколения. Многие микрокомпьютеры, произведенные в 1980-х годах, были оснащены одним чипом, на котором были интегрированы схемы процессора, памяти и функций интерфейса. (См. также суперкомпьютер.)

      Использование персональных компьютеров выросло в 1980-х и 90-х годах. Распространение Всемирной паутины в 1990-х годах привело миллионы пользователей к Интернету, всемирной компьютерной сети, и к 2019 году около 4,5 миллиардов человек, более половины населения мира, имели доступ к Интернету. Компьютеры становились меньше и быстрее, и в начале 21 века они были широко распространены в смартфонах, а затем и в планшетных компьютерах.

      iPhone 4

      Редакторы Британской энциклопедии Эта статья была недавно отредактирована и обновлена ​​Эриком Грегерсеном.

      Поколения ЭВМ:
      От ламповых «монстров» до интегральных микросхем

      С момента появления первого электронного компьютера прошло чуть более 50 лет. За этот короткий период развития общества сменилось несколько поколений ЭВМ, и первые ЭВМ сегодня являются музейной редкостью. История развития вычислительной техники представляет значительный интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроники) и современной техникой, уровень развития которой во многом определяет прогресс в производстве вычислительной техники. удобства.

      В нашей стране электронно-вычислительные машины делятся на поколения. Скорость смены поколений за недолгую историю развития характерна для вычислительной техники, прежде всего за четыре поколения уже сменилось одно старое и сейчас мы работаем с ЭВМ пятого поколения. Какой характерный признак относится к тому или иному поколению? Это прежде всего его элементная база (из каких элементов он в основном построен), и такие важные характеристики, как быстродействие, объем памяти, способы управления и обработки информации. Конечно, деление ЭВМ на поколения в определенной степени условно. Есть множество моделей, которые по одним характеристикам относятся к одному поколению, а по другим – к другому. И все же, несмотря на эту общепризнанную поколениями ЭВМ, ее можно считать качественным скачком в развитии электронно-вычислительной техники.

      Первое поколение ЭВМ (1948 — 1958 гг.)

      Элементная база машин этого поколения была представлена ​​электронными лампами - диодами и триодами. Машины, предназначенные для решения относительно простых научно-технических задач. К этому поколению ЭВМ можно отнести: РЭКМ, БЭСМ-1, М-1, М-2, М-З, «Стрела», «Минск-1», «Урал-1», «Урал-2». », «Урал - 3», М-20, «Сетунь», БЭСМ-2, «Раздан». Они имели значительные размеры, потребляли много энергии, имели низкую надежность работы и слабое программное обеспечение. Их быстродействие не превышало 2—3 тысяч операций в секунду, объем оперативной памяти — 2К или 2048 машинных слов (1К=1024) длиной 48 двоичных разрядов. В 1958 году появилась машина М-20 с памятью 4К и скоростью около 20 тысяч операций в секунду.В машинах первого поколения были реализованы основные логические принципы построения ЭВМ и идеи Гону фон Нейманиса, касающиеся операций ЭВМ по программе, ввода в память и ввода данных (чисел).

      Этот период стал началом коммерческого применения электронно-вычислительных машин для обработки данных. В компьютерах того времени использовались электровакуумные лампы и периферийная память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10 -3 с. Промышленные системы и компиляторы еще не появились. В конце этого периода началось производство устройств с памятью на магнитных сердечниках. Надежность ЭВМ этого поколения была самой низкой.

      Второе поколение ЭВМ (1959 — 1967 гг.)

      Элементной базой машин этого поколения были полупроводниковые приборы. Машины, предназначенные для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Размер, вес и энергопотребление уменьшились. С появлением машин второго поколения область применения электронно-вычислительной техники значительно расширилась, в основном за счет развития программного обеспечения. Появились специализированные машины, например ЭВМ для решения хозяйственных задач, для управления производственным процессом, а также системами передачи информации и т.д. К ЭВМ второго поколения относятся:

      • ЭВМ М-40, -50 для систем противоракетной обороны; , -14, -16 - ЭВМ общего назначения, ориентированная на решение непроизводственных и хозяйственных задач; -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;
      • Минск-22-22 предназначены для решения научных, технических и экономических задач; -4, -6 общие ЭВМ, ориентированные на решение сложных задач науки и техники; , -220, -222 универсальные ЭВМ, ориентированные на решение сложных математических задач; малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач, универсальная вычислительная машина, предназначенная для решения широкого круга инженерных, научно-технических, а также некоторых видов экономических и учетно-статистических задач;
      • Рута-110 мини ЭВМ общего назначения;

      И ряд других КОМПЬЮТЕРОВ.

      БЭСМ-4, М-220, М-222 имели быстродействие около 20—30 тысяч операций в секунду и оперативную память — соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется ЭВМ-6, имеющая скорость около мили в секунду и оперативную память от 32К до 128К (в большинстве машин специально выделены два сегмента памяти по 32К каждый).

      Упомянутый период характеризуется широким применением транзисторов и передовых схем памяти на ядрах. Большое внимание уделялось созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.

      Величина времени доступа 1х10 была достигнута уже -6 с, хотя большая часть узлов компьютера по-прежнему была соединена проводами.

      Компьютеры этого периода успешно применялись в областях, связанных с обработкой наборов данных и решением задач, обычно требующих выполнения рутинных операций на предприятиях, в учреждениях и банках. Эти компьютеры работали по принципу пакетной обработки данных. По сути, таким образом были скопированы ручные методы обработки данных. Новые возможности, предоставляемые компьютерами, практически не использовались.

      В этот период появилась профессия специалиста по информатике, и многие университеты стали давать возможность получить образование в этой области.

      Пульт управления ЭВМ ЕС-1020< бр />

      Третье поколение ЭВМ (1968 — 1973 гг.)

      Элементная база ЭВМ - малые интегральные схемы (МИС). Машины, предназначенные для широкого применения в различных областях науки и техники (учет, управление производством, управление подвижными объектами и т.д.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, но уменьшились энергопотребление и занимаемая площадь и вес.< /p>

      В СССР в 70-х годах получило дальнейшее развитие УПРАВЛЕНИЕ ИНФОРМАЦИОННЫМИ СИСТЕМАМИ. Создана основа для государственной и межгосударственной, в том числе стран-членов СЕ (совет Экономической Взаимопомощи) системы обработки данных. Разработаны универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. - США). В разработке машин ЕС принимают участие специалисты СССР, Народной Республики Болгарии (НРБ), Венгерской Народной Республики (ВНР), Польской Народной Республики (ПНР), Чехословацкой Советской Социалистической Республики (ЧССР) и Германской Демократической Республики (ГДР). КОМПЬЮТЕРОВ. В то же время в СССР создаются многопроцессорные и квазианалоговые ЭВМ, выпускаются мини-ЭВМ "Мир-31", "Мир-32", "НАИРИ-34". Для управления технологическими процессами созданы ЭВМ серии АСВТ М-6000 и М-7000 (разработчики В.П.Рязанов и др.). Разработаны и выпускаются настольные мини ЭВМ на интегральных микросхемах М-180, "Электроника-79, -100, -125, -200", "Электроника ДЗ-28", "Электроника НЦ-60" и др.

      К машинам третьего поколения относятся «Днепр-2», ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и некоторые их промежуточные модификации - ЕС - 1021 и др.), МИР - 2, "НАИРИ-2" и ряд других.

      Характерной чертой данного периода стало резкое снижение цен на оборудование. Это было достигнуто в основном за счет использования интегральных схем. В микросхему встроены обычные электрические соединения с помощью проводов. Это позволяло получать время доступа до 2х10 -9 с. В этот период на рынке появились удобные рабочие станции, которые за счет объединения в сеть значительно упростили возможность получения небольшого времени доступа, обычно присущего большим машинам. Дальнейший прогресс в развитии вычислительной техники был связан с развитием полупроводниковой памяти, жидкокристаллических экранов и электронной памяти. В конце этого периода произошел коммерческий прорыв в области микроэлектронных технологий.

      Повышение производительности компьютеров и только что появившиеся многомашинные системы дали принципиальную возможность реализации таких новых задач, которые были достаточно сложными и часто приводили к неразрешимым проблемам при их программной реализации. Заговорили о «кризисе программного обеспечения». Затем появились эффективные методы программной инженерии. Создание новых программных продуктов теперь все чаще основывалось на методах планирования и специальных методах программирования.

      Этот период связан с бурным развитием компьютеров реального времени. Появилась тенденция, согласно которой в задачах управления наряду с большими ЭВМ есть место и для использования малых машин. Таким образом, миникомпьютер оказался хорошо справляющимся с функциями управления сложными установками, где большой компьютер часто отказывается работать. Комплексные системы управления разделены таким образом на подсистемы, каждая из которых использует мини-ЭВМ. Задачи планирования в иерархической системе возлагаются на большой компьютер реального времени с целью координации управления подсистемами и обработки центральных данных об объекте.

      Поначалу программное обеспечение для малых компьютеров было совершенно элементарным, однако к 1968 году появились первые коммерческие операционные системы реального времени, специально разработанные для них языки программирования высокого уровня и кросс-система. Все это обеспечило наличие небольших машин для широкого спектра применений. Сегодня вряд ли можно найти такую ​​отрасль, в которой эти машины не применялись бы с успехом в том или ином виде. Их функции в производстве весьма разнообразны; Так, можно указать простые системы сбора данных, автоматизированные испытательные стенды, систему управления процессами. Следует подчеркнуть, что управляющий компьютер в настоящее время все чаще вмешивается в область обработки коммерческой информации, которая применяется для решения коммерческих задач.

      Мини-ЭВМ начали применять для решения инженерных задач, связанных с проектированием. Проведены первые эксперименты, показавшие эффективность использования компьютеров в качестве инструментов проектирования.

      Применение распределенных вычислительных систем стало основой для децентрализации решения задач, связанных с обработкой данных на предприятиях, в банках и других учреждениях. В то же время для данного периода характерно хроническое накопление кадров, подготовленных к работе в области электронно-вычислительных машин. Особенно это касается задач, связанных с проектированием распределенных вычислительных систем и систем реального времени.

      Четвертое поколение ЭВМ (1974 — 1982 гг.)

      Элементная база ЭВМ - большие интегральные схемы (БИС). Машины, предназначенные для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, быту. Высокая степень интеграции способствует увеличению плотности подпрограммной связи электронной аппаратуры, повышению ее надежности, что приводит к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное влияние на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь между структурой машины и ее программным обеспечением, особенно ее операционной системой (или монитором) — теми программами, которые организуют непрерывную работу машины без вмешательства человека.

      К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1025, -1035, -1045, -1055, -1065 («Число 2»), -1036, -1046, -1066 , СМ-1420, -1600, -1700, все ПЭВМ ("Электроника МС 0501", "Электроника-85", "ИСКРА-226", ЕС-1840, -1841, -1842 и др.), а также другие типы и модификации. Многопроцессорный вычислительный комплекс «Эльбрус» также относится к ЭВМ четвертого поколения. «Эльбрус-1КБ» имел скорость до 5,5 млн. операций с плавающей запятой в секунду, а объем оперативной памяти до 64 Мб. На «Эльбрусе-2» производительность достигала 120 млн. куб. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мслов (слово - 72 бита), максимальная пропускная способность каналов ввода-вывода - 120 Мб/сек.

      Читайте также: