К какой шине персонального компьютера подключено большинство устройств

Обновлено: 21.11.2024

Шина данных — это система внутри компьютера или устройства, состоящая из разъема или набора проводов, которая обеспечивает транспортировку данных. Различные типы шин данных развивались вместе с персональными компьютерами и другим оборудованием.

Techopedia рассказывает о шине данных

Шина данных может передавать данные в память компьютера и из нее, а также в центральный процессор (ЦП) или из него, который выступает в качестве «двигателя» устройства. Шина данных также может передавать информацию между двумя компьютерами.

Новые, более широкие шины данных могут поддерживать более высокие скорости передачи данных, а объем данных, которые они могут передавать, называется пропускной способностью.

Скорость обмена информацией между компонентами регулируется контроллером шины. Например, информация, поступающая от ЦП, всегда будет передаваться с гораздо большей скоростью, чем данные, поступающие от других компонентов.

Однако в компьютере все должно двигаться с одинаковой скоростью, и для этой цели служат контроллеры шины. Раньше шины данных первого поколения не имели контроллера и состояли из простых жгутов проводов, которые соединяли память компьютера с различными периферийными устройствами.

Шина данных может работать как параллельная или последовательная шина в зависимости от того, как передаются данные. Параллельная шина используется в более сложных соединениях, которые должны передавать более одного бита за раз. Типичные примеры включают соединения Peripheral Component Interconnect (PCI) Express и Small Computer System Interface (SCSI). Данные передаются по многим проводам одновременно.

Последовательные шины используют один провод для отправки и получения данных между компонентами и обычно состоят из относительно небольшого количества проводов, поэтому они несколько проще, чем параллельные соединения. Типичными примерами последовательной шины являются соединения универсальной последовательной шины (USB) и SATA.

Каждый компьютер также содержит как внутренние (или локальные) шины данных, так и внешние шины данных. Локальная шина данных соединяет все компоненты материнской платы, а внешняя шина соединяет материнскую плату со всеми остальными периферийными устройствами.

Использование термина "шина данных" в ИТ несколько похоже на использование термина "электрическая шина" в электронике. Электронная шина предоставляет средства для передачи тока примерно так же, как шина данных обеспечивает способ передачи данных.

В современных сложных вычислительных системах данные часто находятся в пути, проходя через различные части материнской платы компьютера и периферийные устройства. С новыми сетевыми конструкциями данные также передаются между множеством различных аппаратных средств и более широкой кабельной или виртуальной системой. Шины данных — это основные инструменты, помогающие упростить передачу всех данных, что позволяет передавать так много данных по требованию в потребительских и других системах.

4 слота для карт шины PCI Express (сверху вниз: x4, x16, x1 и x16) по сравнению с 32-битным обычным слотом для карт шины PCI (самый нижний)

В компьютерной архитектуре шина (от латинского omnibus, что означает «для всех») — это система связи, которая передает данные между компонентами внутри компьютера или между компьютерами. Это выражение охватывает все соответствующие аппаратные компоненты (провода, оптоволокно и т. д.) и программное обеспечение, включая протоколы связи.

Ранние компьютерные шины представляли собой параллельные электрические провода с несколькими соединениями, но теперь этот термин используется для любого физического устройства, которое обеспечивает те же логические функции, что и параллельная электрическая шина. Современные компьютерные шины могут использовать как параллельные, так и последовательные соединения, а также могут быть подключены либо по многоточечной (электрической параллельной), либо по топологии гирляндной цепи, либо через коммутируемые концентраторы, как в случае USB.

Предыстория и номенклатура

Компьютерные системы обычно состоят из трех основных частей: центрального процессора (ЦП), который обрабатывает данные, памяти, в которой хранятся программы и данные, подлежащие обработке, и устройств ввода/вывода (ввода/вывода) в качестве периферийных устройств, которые взаимодействуют с внешний мир. Ранний компьютер мог использовать встроенный в руки ЦП из вакуумных ламп, магнитный барабан для основной памяти, а также перфоленту и принтер для чтения и записи данных. В современной системе мы можем найти многоядерный процессор, DDR3 SDRAM для памяти, жесткий диск для дополнительного хранилища, графическую карту и ЖК-дисплей в качестве системы отображения, мышь и клавиатуру для взаимодействия и соединение Wi-Fi для работы в сети. . В обоих примерах компьютерные шины той или иной формы перемещают данные между всеми этими устройствами.

В большинстве традиционных компьютерных архитектур процессор и основная память, как правило, тесно связаны.Обычно микропроцессор представляет собой один чип, на выводах которого имеется ряд электрических соединений, которые можно использовать для выбора «адреса» в основной памяти, а другой набор контактов — для чтения и записи данных, хранящихся в этом месте. В большинстве случаев ЦП и память имеют общие сигнальные характеристики и работают синхронно. Шина, соединяющая ЦП и память, является одной из определяющих характеристик системы и часто называется просто системной шиной.

Таким же образом можно разрешить периферийным устройствам взаимодействовать с памятью, подключив адаптеры в виде карт расширения непосредственно к системной шине. Обычно это достигается с помощью стандартного электрического разъема, некоторые из которых образуют шину расширения или локальную шину. Однако, поскольку различия в производительности между ЦП и периферийными устройствами сильно различаются, обычно требуется какое-то решение, чтобы гарантировать, что периферийные устройства не снижают общую производительность системы. Многие процессоры имеют второй набор контактов, похожий на те, что используются для связи с памятью, но могут работать с очень разными скоростями и с использованием разных протоколов. Другие используют интеллектуальные контроллеры для размещения данных непосредственно в памяти — концепция, известная как прямой доступ к памяти. Большинство современных систем сочетают оба решения там, где это уместно.

По мере роста числа потенциальных периферийных устройств использование карты расширения для каждого периферийного устройства становилось все более нецелесообразным. Это привело к появлению шинных систем, разработанных специально для поддержки нескольких периферийных устройств. Типичными примерами являются порты SATA в современных компьютерах, которые позволяют подключать несколько жестких дисков без необходимости использования карты. Однако эти высокопроизводительные системы, как правило, слишком дороги для реализации в недорогих устройствах, таких как мышь. Это привело к параллельной разработке ряда низкопроизводительных шинных систем для этих решений, наиболее распространенным примером которых является универсальная последовательная шина. Все такие примеры можно назвать периферийными шинами, хотя эта терминология не универсальна.

В современных системах разница в производительности между ЦП и основной памятью настолько велика, что увеличивающийся объем высокоскоростной памяти встраивается непосредственно в ЦП, что называется кешем. В таких системах центральные процессоры взаимодействуют с помощью высокопроизводительных шин, которые работают на скоростях, намного превышающих скорость памяти, и взаимодействуют с памятью с использованием протоколов, аналогичных тем, которые использовались исключительно для периферийных устройств в прошлом. Эти системные шины также используются для связи с большинством (или со всеми) другими периферийными устройствами через адаптеры, которые, в свою очередь, взаимодействуют с другими периферийными устройствами и контроллерами. Такие системы архитектурно больше похожи на мультикомпьютеры, обменивающиеся данными по шине, а не по сети. В этих случаях шины расширения являются полностью отдельными и больше не используют какую-либо архитектуру с их центральным процессором (и фактически могут поддерживать множество разных процессоров, как в случае с PCI). То, что раньше было системной шиной, теперь часто называют внешней шиной.

С учетом этих изменений классические термины «система», «расширение» и «периферия» больше не имеют одинаковых значений. Другие распространенные системы категоризации основаны на основной роли шины, соединении устройств внутри или снаружи, например, PCI или SCSI. Однако многие распространенные современные шинные системы могут использоваться для обоих; SATA и связанный с ним eSATA являются одним из примеров системы, которая ранее описывалась как внутренняя, в то время как в некоторых автомобильных приложениях используется в основном внешний IEEE 1394, более похожий на системную шину. Другие примеры, такие как InfiniBand и I²C, с самого начала разрабатывались для внутреннего и внешнего использования.

Внутренняя шина

Внутренняя шина, также известная как внутренняя шина данных, шина памяти, системная шина или шина Front-Side-Bus, соединяет все внутренние компоненты компьютера, такие как ЦП и память, с материнской платой. Внутренние шины данных также называются локальными шинами, поскольку они предназначены для подключения к локальным устройствам. Эта шина обычно довольно быстра и не зависит от остальных компьютерных операций.

Внешняя шина

Внешняя шина или шина расширения состоит из электронных путей, которые соединяют различные внешние устройства, такие как принтер и т. д., с компьютером.

Детали реализации

Шины могут быть параллельными шинами, по которым слова данных передаются параллельно по нескольким проводам, или последовательными шинами, по которым данные передаются в побитово-последовательной форме. Добавление дополнительных соединений питания и управления, дифференциальных драйверов и соединений данных в каждом направлении обычно означает, что большинство последовательных шин имеют больше проводников, чем минимум один, используемый в 1-Wire и UNI/O. По мере увеличения скорости передачи данных становится все труднее обойти проблемы временного сдвига, энергопотребления, электромагнитных помех и перекрестных помех между параллельными шинами. Одним из частичных решений этой проблемы была двойная прокачка автобуса.Часто последовательная шина может работать с более высокими общими скоростями передачи данных, чем параллельная шина, несмотря на меньшее количество электрических соединений, потому что последовательная шина по своей природе не имеет перекоса синхронизации или перекрестных помех. USB, FireWire и Serial ATA являются примерами этого. Многоточечные соединения плохо подходят для быстрых последовательных шин, поэтому в большинстве современных последовательных шин используется гирляндная цепочка или концентратор.

Сетевые подключения, такие как Ethernet, обычно не считаются шинами, хотя разница в основном носит концептуальный, а не практический характер. Атрибут, обычно используемый для характеристики шины, заключается в том, что шина обеспечивает питание для подключенного оборудования. Это подчеркивает происхождение шины от шинной архитектуры как источника коммутируемого или распределенного питания. Это исключает, как шины, такие схемы, как последовательный интерфейс RS-232, параллельный Centronics, интерфейсы IEEE 1284 и Ethernet, поскольку эти устройства также нуждались в отдельных источниках питания. Устройства с универсальной последовательной шиной могут использовать питание от шины, но часто используют отдельный источник питания. . Это различие иллюстрируется телефонной системой с подключенным модемом, где соединение RJ11 и соответствующая схема модулированной сигнализации не считаются шиной и аналогичны соединению Ethernet. Схема подключения телефонной линии не считается шиной по отношению к сигналам, но центральный офис использует шины с поперечными переключателями для соединения между телефонами.

Однако это различие — то, что питание обеспечивается шиной, — не имеет места во многих системах авионики, где используются соединения для передачи данных, такие как ARINC 429, ARINC 629, MIL-STD-1553B (STANAG 3838) и EFABus. (STANAG 3910) обычно называют «шинами данных» или, иногда, «шинами данных». Такие шины бортовых данных обычно характеризуются наличием нескольких устройств или линейно заменяемых элементов/блоков (LRI/LRU), подключенных к общей общей среде. Они могут, как и в случае с ARINC 429, быть симплексными, т. е. иметь один источник LRI/LRU, или, как в случае с ARINC 629, MIL-STD-1553B и STANAG 3910, быть дуплексными, позволяя всем подключенным LRI/LRU действовать в в разное время (полудуплекс) в качестве передатчиков и получателей данных.

История

Со временем несколько групп людей работали над различными стандартами компьютерных шин, включая Комитет по стандартам архитектуры шин IEEE (BASC), исследовательскую группу IEEE «Superbus», Инициативу открытых микропроцессоров (OMI), Инициативу открытых микросистем (OMI). ), «Банда девяти», разработавшая EISA и т. д.

Первое поколение

Ранние компьютерные шины представляли собой пучки проводов, к которым подключалась память компьютера и периферийные устройства. Анекдотично названные «цифровой ствол», они были названы в честь электрических силовых шин или сборных шин. Практически всегда была одна шина для памяти и одна или несколько отдельных шин для периферии. Доступ к ним осуществлялся с помощью отдельных инструкций с совершенно разными временными интервалами и протоколами.

Одной из первых сложностей было использование прерываний. Ранние компьютерные программы выполняли ввод-вывод, ожидая в цикле готовности периферийного устройства. Это была пустая трата времени для программ, у которых были другие задачи. Кроме того, если программа попытается выполнить эти другие задачи, повторная проверка программы может занять слишком много времени, что приведет к потере данных. Таким образом, инженеры устроили так, чтобы периферийные устройства прерывали работу ЦП. Прерывания должны были иметь приоритет, потому что ЦП может выполнять код только для одного периферийного устройства за раз, а некоторые устройства более критичны ко времени, чем другие.

В системах высокого класса появилась идея контроллеров каналов, которые представляли собой небольшие компьютеры, предназначенные для обработки ввода и вывода данной шины. IBM представила их на IBM 709 в 1958 году, и они стали общей чертой их платформ. Другие поставщики высокопроизводительных систем, такие как Control Data Corporation, реализовали аналогичные проекты. Как правило, контроллеры каналов делают все возможное, чтобы выполнять все операции с шиной внутри себя, перемещая данные, когда известно, что ЦП занят в другом месте, если это возможно, и используя прерывания только при необходимости. Это значительно снизило нагрузку на ЦП и повысило общую производительность системы.

Одна системная шина

Для обеспечения модульности шины памяти и ввода-вывода можно объединить в единую системную шину. В этом случае можно использовать единую механическую и электрическую систему для соединения многих компонентов системы, а в некоторых случаях и всех их.

Позднее компьютерные программы начали совместно использовать память, общую для нескольких процессоров. Доступ к этой шине памяти также должен быть приоритетным. Простым способом приоритезации прерываний или доступа к шине была гирляндная цепочка. В этом случае сигналы будут естественным образом проходить по шине в физическом или логическом порядке, что устраняет необходимость в сложном планировании.

Мини и микро

Digital Equipment Corporation (DEC) еще больше снизила стоимость серийных миникомпьютеров и сопоставила периферийные устройства с шиной памяти, чтобы устройства ввода и вывода выглядели как ячейки памяти. Это было реализовано в юнибусе PDP-11 примерно в 1969 году.

Ранние микрокомпьютерные шинные системы представляли собой пассивную объединительную плату, подключенную напрямую или через буферные усилители к контактам ЦП. Память и другие устройства будут добавлены к шине с использованием того же адреса и контактов данных, что и сам ЦП, подключенных параллельно. Коммуникацией управлял ЦП, который считывал и записывал данные с устройств, как если бы они были блоками памяти, используя одни и те же инструкции, все синхронизировались центральными часами, контролирующими скорость ЦП. Тем не менее, устройства прерывали ЦП, сигнализируя на отдельных контактах ЦП. Например, контроллер дисковода сигнализировал бы ЦП, что новые данные готовы к чтению, после чего ЦП перемещал бы данные, читая «ячейку памяти», соответствующую дисководу. Почти все ранние микрокомпьютеры были построены таким образом, начиная с шины S-100 в компьютерной системе Altair 8800.

В некоторых случаях, в первую очередь в IBM PC, несмотря на то, что может использоваться аналогичная физическая архитектура, инструкции для доступа к периферийным устройствам (in и out) и памяти (mov и другие) вообще не были унифицированы и по-прежнему генерируют разные Сигналы процессора, которые можно использовать для реализации отдельной шины ввода-вывода.

Эти простые системы шин имели серьезный недостаток при использовании для компьютеров общего назначения. Все оборудование в шине должно говорить с одинаковой скоростью, так как оно использует одни и те же часы.

Увеличить скорость процессора становится сложнее, потому что скорость всех устройств также должна увеличиваться. Когда непрактично или экономично иметь все устройства такими же быстрыми, как ЦП, ЦП должен либо перейти в состояние ожидания, либо временно работать на более низкой тактовой частоте, чтобы общаться с другими устройствами в компьютере. Эта проблема была допустима во встроенных системах, но на компьютерах общего назначения, расширяемых пользователем, эта проблема долго не допускалась.

Такие шинные системы также сложно настроить, если они построены из стандартного стандартного оборудования. Обычно для каждой добавляемой карты расширения требуется множество перемычек для установки адресов памяти, адресов ввода/вывода, приоритетов прерываний и номеров прерываний.

Второе поколение

Однако у этих более новых систем было одно общее качество со своими более ранними собратьями: все в автобусе должны были говорить с одинаковой скоростью. В то время как ЦП теперь был изолирован и мог увеличивать скорость, ЦП и память продолжали увеличивать скорость намного быстрее, чем шины, с которыми они общались. В результате скорость шины стала намного меньше, чем требуется современной системе, и машинам не хватало данных. Особенно распространенным примером этой проблемы было то, что видеокарты быстро обгоняли даже более новые системы шин, такие как PCI, и компьютеры начали включать AGP только для управления видеокартой. К 2004 году AGP снова уступил место высокопроизводительным видеокартам и другим периферийным устройствам и был заменен новой шиной PCI Express.

Все большее число внешних устройств также используют собственные системы шин. Когда дисководы были впервые представлены, они добавлялись к машине с картой, вставленной в шину, поэтому в компьютерах так много слотов на шине. Но в 1980-х и 1990-х годах для удовлетворения этой потребности были представлены новые системы, такие как SCSI и IDE, в результате чего большинство слотов в современных системах остались пустыми. Сегодня в типичной машине может быть около пяти различных шин, поддерживающих различные устройства.

Третье поколение

Примерно с 2001 года на рынке появляются автобусы «третьего поколения», включая HyperTransport и InfiniBand. Они также имеют тенденцию быть очень гибкими с точки зрения их физических подключений, что позволяет использовать их как в качестве внутренних шин, так и для соединения разных машин вместе. Это может привести к сложным проблемам при попытке обслужить различные запросы, поэтому большая часть работы в этих системах касается разработки программного обеспечения, а не самого оборудования. В целом, эти шины третьего поколения, как правило, больше похожи на сеть, чем на первоначальную концепцию шины, с более высокими затратами на протокол, чем в ранних системах, а также позволяют нескольким устройствам использовать шину одновременно.

Шины, такие как Wishbone, были разработаны сторонниками аппаратного обеспечения с открытым исходным кодом в попытке устранить юридические и патентные ограничения при проектировании компьютеров.

Компьютерные шины. Это подразделение основного дерева интерфейсных шин для шин ПК. На этой странице приведены описания общих шин расширения ПК и шин периферийных устройств. Интерфейсные шины, предназначенные для работы с персональными компьютерами [ПК], перечислены ниже. Некоторые из этих типов шин могут также работать через объединительную плату и/или кабель. Каждый приведенный ниже список имеет краткое описание. Используйте ссылку, если она имеется, для получения более подробного описания шины и доступа к ссылкам на производителей компонентов и ИС, выводы разъемов, названия сигналов или спецификации. Шины используются на компьютерах IBM PC или Apple. Также предоставляется несколько автобусов SUN.Видеошины, работающие по кабелю между компьютером и монитором, перечислены вместе в нижней части страницы или могут быть найдены на отдельной странице Шины видеомонитора ПК. В нижней части страницы приведена таблица, в которой сравниваются многие из наиболее распространенных типов шин персональных компьютеров.

Кабель для ПК и слот-шины

ЕСДИ; (Расширенный интерфейс малых устройств) Интерфейс жесткого диска емкостью 20 МБ, предшествовавший ATA. УСТАРЕЛО

Шины карт флэш-памяти На этой странице перечислены несколько форматов карт флэш-памяти под общим названием стандарта или спецификации. Типы карт флэш-памяти включают в себя: SD-карту, CompactFlash, SmartMedia.

Шина HyperTransport (шина «точка-точка» с [как минимум] двумя однонаправленными каналами; использует 2, 4, 8, 16 или 32 бита [в каждом направлении] со скоростью передачи данных 800 Мбит/с на пару с частотой 400 МГц. часы. Формально известное как Lightning Data Transport (LDT). Используется в мобильных персональных компьютерах, серверах, сетевом оборудовании, встроенных приложениях и коммуникационном оборудовании)

Экспресс-автобус PISA

Автобус SCI; IEEE Std 1596-1992, SCI представляет собой масштабируемую сеть, узлы соединены между собой однонаправленным соединением «точка-точка» [кольцом]. Пропускная способность растет с количеством используемых [одновременных] узлов. Каналы SCI работают со скоростью 1 Гбит/с [последовательный] или 1 Гбит/с [16-битный параллельный] с использованием двухфазного тактового сигнала 250 МГц по оптоволоконному кабелю или витой паре. Физические контроллеры SCI используют уровни сигнализации LVDS для 16- и 8-битных каналов связи.>

Интерфейсы видеокабелей для ПК

MDA [Адаптер монохромного дисплея]: создан IBM как часть оригинального персонального компьютера [ПК]. MDA — это только монохромный текстовый стандарт, позволяющий отображать текст размером 80x25 символов. УСТАРЕЛО.

CGA [адаптер цветной графики]: стандарт CGA [1981] поддерживает несколько различных режимов; текстовый режим самого высокого качества — 80x25 символов в 16 цветах. Мониторы цифровые с композитным сигналом на логических уровнях ТТЛ; Hs, Vs и RGBI — все на логических уровнях TTL. УСТАРЕЛО.

EGA [улучшенный графический адаптер]. Этот стандарт EGA [1984] предлагал улучшенное разрешение и больше цветов, чем CGA. EGA допускал графический вывод до 16 цветов (выбранных из палитры из 64) при разрешении экрана 640x350 или текста 80x25 с 16 цветами, все с частотой обновления 60 Гц. Мониторы имеют цифровой интерфейс. УСТАРЕВШИЙ. По ссылке указаны выводы разъема.

VGA [Video Graphics Array]: VGA [1987] — это надмножество EGA, включающее все режимы EGA. Старые дисплеи отправляли на монитор цифровые сигналы, а VGA (и более поздние версии) отправляли аналоговые сигналы. Это изменение было необходимо для большей точности цветопередачи. Предоставляется список выводов VGA.

XGA [Extended Graphics Array]: представлен IBM в 1990 году.

SVGA [Super VGA] предлагает больше цветов и разрешений; Однако на самом деле SVGA не существует как единый стандарт. Основной стандарт относится к BIOS и тому, как компьютер общается с монитором. Канал данных дисплея VESA [DDC] — это стандарт VESA, который определяет, как считывать определенные выводы в стандартном мониторе SVGA для запроса возможностей монитора.

FPDI-1 [Интерфейс дисплея с плоской панелью] описывает электрический, логический и соединительный интерфейс между дисплеями с плоским экраном и контроллерами дисплея в интегрированной среде.

P&D [Plug and Display] предоставляет цифровой интерфейс и дополнительный аналоговый интерфейс. DDC2 предоставляется в дополнение к дополнительному USB и/или FireWire.

Распиновка разъема DFP [Digital Flat Panel] и названия сигналов. DFP основан на интерфейсе Plug and Display [P&D].

Распиновка разъема EVC [Enhanced Video Connector] и названия сигналов

VMChannel [VESA Media Channel] описывает аппаратный интерфейс для настольных мультимедийных систем. VMChannel — это синхронизированный по часам интерфейс с несколькими ведущими и несколькими отводами, предназначенный для параллельных потоков данных пикселей. VMChannel обеспечивает двунаправленный поток несжатых мультимедийных пикселей между несколькими видеоадаптерами в реальном времени.

Видеоинтерфейс 13W3 обычно используется в компьютерах Sun.

SGI Bus [Silicon Graphics Inc] произвела рабочие станции, несколько таблиц выводов приведены на этой странице.
9-контактный цифровой видеоинтерфейс
Видеоинтерфейс DB-15
Распиновка плоскопанельного цифрового видео и видеоинтерфейса SGI O2Cam

Сравнение интерфейсов ПК

Компьютерные шины, совместимые с IBM, компьютерные шины Macintosh и интерфейсы шины SGI перечислены выше. В большинстве случаев объединительная плата или материнская плата имеют слоты для добавления дополнительных карт в систему. Дополнительные слоты называются слотами расширения. Фактическое количество и тип слотов расширения зависит от материнской платы. Однако некоторые недорогие системы поставлялись вообще без слотов расширения. Но реальное количество максимальных слотов расширения будет зависеть от используемой интерфейсной шины. Например шина ISA; Шины PC-XT и PC-AT могут иметь не более 8 слотов расширения.Как только конкретная шина начинает устаревать, материнская плата обычно предоставляет два или более разных слота. Например, поскольку слот ISA устаревает, материнская плата может поставляться с несколькими слотами PC-AT, несколькими слотами PCI и слотом AGP.

Все различные описания шины интерфейса персонального компьютера [ПК] или ссылки на страницы электронной шины, перечисленные выше, относятся к уровню 1 [физическому, электрическому и механическому уровням] стека протоколов OSI. Многие страницы электронной шины также ссылаются на уровень 2; уровень канала передачи данных [который обеспечивает вставку битов/байтов, контрольную сумму, протоколы..]. Кроме того, все ссылки на страницы, перечисленные выше, содержат ссылки на устройства, относящиеся к этой конкретной шине, включая производителей микросхем, производителей разъемов, производителей шинных оконечных устройств, производителей кабелей и производителей электронного оборудования, стандарты/спецификации и т. д. Объем описания, предоставленного для любой конкретной электронной шины, сильно варьируется от страницы к странице в зависимости от шины. Лишь в нескольких случаях конкретный автобус указан как устаревший; однако в списке может быть много шин, если они не устарели, которые не следует использовать в новых проектах.

В приведенной выше таблице представлены только окончательные версии для каждого из показанных интерфейсов ПК.
Полная таблица, в которой также показано количество предыдущих версий шины, приведена на странице таблицы сравнения шин для ПК.

В компьютерах есть много внутренних компонентов. Чтобы эти компоненты могли взаимодействовать друг с другом, они используют провода, известные как «шина».

Шина — это общий путь, по которому информация передается от одного компонента компьютера к другому. Этот путь используется для целей связи и устанавливается между двумя или более компьютерными компонентами. Мы собираемся проверить различные архитектуры компьютерных шин, которые можно найти в компьютерах.

Различные типы компьютерных шин

Компьютерные автобусы

Функции шин в компьютерах

Обзор функций шин в компьютерах

Шина расширения упрощает подключение к компьютеру дополнительных компонентов и устройств, таких как ТВ-карта или звуковая карта.

Терминология автобусов

Компьютеры имеют два основных типа шин:

  1. Системная шина. Это шина, которая соединяет ЦП с основной памятью на материнской плате. Системная шина также называется внешней шиной, шиной памяти, локальной шиной или главной шиной.
  2. Несколько шин ввода-вывода (I/O — это аббревиатура от ввода/вывода), соединяющих различные периферийные устройства с ЦП. Эти устройства подключаются к системной шине через «мост», реализованный в наборе микросхем процессоров. Другие названия шины ввода-вывода включают «расширенная шина», «внешняя шина» или «хост-шина».

Типы шины расширения

Вот некоторые из распространенных типов шин расширения, которые использовались в компьютерах:

  • ISA – отраслевая стандартная архитектура
  • EISA — расширенная стандартная архитектура
  • MCA – микроканальная архитектура
  • VESA – Ассоциация стандартов видеоэлектроники.
  • PCI — соединение периферийных компонентов
  • PCI Express (PCI-X)
  • PCMCIA — Ассоциация производителей карт памяти для персональных компьютеров (также называемая шиной ПК)
  • AGP — ускоренный графический порт
  • SCSI — интерфейс малых компьютерных систем

8-битные и 16-битные шины ISA

8-битные и 16-битные шины ISA

Шина ISA

Для IBM PC-AT на базе 80286 была анонсирована улучшенная конструкция шины, которая могла передавать 16-битные данные за раз. 16-разрядную версию шины ISA иногда называют шиной AT (AT-Advanced Technology).

250+ цитат о собаках и идей подписей для Instagram

Обзор устройства языкового переводчика Timekettle M2

8 лучших альтернатив Adobe Reader, которые должен использовать каждый

Сравнение 8- и 16-битной шины ISA

16-битный интерфейс данных

36-контактный удлинитель AT

MCA (микроканальная архитектура)

IBM разработала эту шину в качестве замены ISA при разработке ПК PS/2 в 1987 году.

Шина предлагала ряд технических улучшений по сравнению с шиной ISA. Например, MCA работал на более высокой скорости 10 МГц и поддерживал 16-битные или 32-битные данные. Он также поддерживал мастеринг шины - технологию, которая размещала мини-процессор на каждой плате расширения. Эти мини-процессоры контролировали большую часть передачи данных, позволяя центральному процессору выполнять другие задачи.

Одним из преимуществ MCA было то, что подключаемые карты настраивались программно; это означает, что они требовали минимального вмешательства пользователя при настройке.

Шина расширения MCA не поддерживала карты ISA, и IBM решила взимать с других производителей роялти за использование этой технологии. Это сделало его непопулярным, и теперь это устаревшая технология.

Автобус EISA

Слоты шины EISA (слева), куда подключались карты EISA

EISA (расширенная стандартная архитектура)

Это шинная технология, разработанная группой производителей в качестве альтернативы MCA. Архитектура шины была разработана для использования 32-битного пути данных и обеспечивала 32 адресные линии, предоставляя доступ к 4 ГБ памяти.

Как и MCA, EISA предлагала дисковую установку для карт, но по-прежнему работала на частоте 8 МГц, чтобы быть совместимой с ISA.

Слоты расширения EISA в два раза глубже, чем слоты ISA. Если карта ISA помещена в слот EISA, она будет использовать только верхний ряд разъемов. Однако полная карта EISA использует обе строки. Он предлагал мастеринг шины.

Карты EISA были относительно дорогими и обычно использовались на высокопроизводительных рабочих станциях и сетевых серверах.

Шина VESA

Его также называли локальной шиной или шиной VESA-Local. VESA (Ассоциация стандартов видеоэлектроники) была изобретена, чтобы помочь стандартизировать спецификации видео для ПК, тем самым решив проблему проприетарных технологий, когда разные производители пытались разработать свои собственные шины.

Шина VL обеспечивала 32-битный путь передачи данных и работала на частоте 25 или 33 МГц. Он работал на той же тактовой частоте, что и центральный процессор. Но это стало проблемой по мере увеличения скорости процессора, потому что чем быстрее должны работать периферийные устройства, тем дороже их производство.

Было трудно реализовать шину VL-Bus на более новых процессорах, таких как 486 и новые процессоры Pentium. В конце концов шина VL была заменена шиной PCI.

Разъемы VESA имели дополнительный набор разъемов; это сделало карты больше. Конструкция VESA была обратно совместима со старыми картами ISA.

Возможности платы локальной шины VESA:-

  • 32-битный интерфейс
  • 62/36-контактный разъем
  • Расширение локальной шины VESA 90+20 контактов

Соединение периферийных компонентов

Peripheral Component Interconnect (PCI) — это одна из последних разработок в области шинной архитектуры и текущий стандарт для карт расширения ПК. Intel разработала и выпустила ее как шину расширения для процессора Pentium в 1993 году. Это локальная шина, аналогичная VESA, то есть она соединяет ЦП, память и периферийные устройства с более широким и быстрым путем передачи данных.

PCI поддерживает как 32-битную, так и 64-битную ширину данных; он совместим с процессорами 486 и Pentium. Ширина данных шины равна процессору, например, 32-разрядный процессор будет иметь 32-разрядную шину PCI и работать на частоте 33 МГц.

PCI использовался при разработке Plug and Play (PnP), и все карты PCI поддерживают PnP. Это означает, что пользователь может подключить новую карту к компьютеру, включить ее, и она «самоидентифицируется» и «самоопределяется» и начинает работать без ручной настройки с помощью перемычек.

В отличие от VESA, PCI поддерживает управление шиной. Это означает, что шина имеет некоторую вычислительную мощность, и, таким образом, ЦП тратит меньше времени на обработку данных. Большинство карт PCI рассчитаны на 5 В, но есть также карты на 3 В и на два напряжения. Используемые слоты для ключей помогают различать карты 3 В и 5 В, а также следить за тем, чтобы карта 3 В не вставлялась в разъем 5 В и наоборот.

Слоты PCI

Архитектура шины PCI

Ускоренный графический порт

Потребность в высоком качестве и высокой производительности видео на компьютерах привела к разработке порта ускоренной графики (AGP). Порт AGP подключается к ЦП и работает со скоростью процессорной шины. Это означает, что видеоинформация быстрее отправляется на карту для обработки.

AGP использует основную память ПК для хранения 3D-изображений. По сути, это дает видеокарте AGP неограниченный объем видеопамяти. Чтобы ускорить передачу данных, Intel разработала порт как прямой путь к основной памяти ПК.

Скорость передачи данных варьируется от 264 Мбит/с до 528 Мбит/с, от 800 Мбит/с до 1,5 Гбит/с. Разъем AGP идентифицируется по коричневому цвету.

Ассоциация производителей карт памяти для персональных компьютеров (PC Card)

Ассоциация производителей карт памяти для персональных компьютеров была основана для создания стандартной шины для портативных компьютеров. Поэтому он в основном используется в небольших компьютерах.

Интерфейс системы малого компьютера

Сокращение от Small Computer System Interface, стандарт параллельного интерфейса, используемый компьютерами Apple Macintosh, ПК и системами Unix для подключения периферийных устройств к компьютеру.

SCSI-порт

Порт Mac LC SCSI

Универсальная последовательная шина (USB)

Это стандарт внешней шины, поддерживающий скорость передачи данных 12 Мбит/с. К одному порту USB можно подключить до 127 периферийных устройств, таких как мыши, модемы и клавиатуры. USB также поддерживает горячее подключение или вставку (возможность подключения устройства без выключения ПК) и plug and play (вы подключаете устройство и начинаете использовать его без настройки).

У нас есть две версии USB.

USB 1x

Первоначальный стандарт USB 1.0, выпущенный в 1996 году, обеспечивал скорость передачи данных 1,5 Мбит/с. За стандартом USB 1.1 последовали две скорости передачи данных: 12 Мбит/с для таких устройств, как дисководы, которым требуется высокая пропускная способность, и 1,5 Мбит/с для таких устройств, как джойстики, которым требуется гораздо меньшая пропускная способность.

USB 2x

В 2002 г. была представлена ​​новая спецификация USB 2.0, также называемая Hi-Speed ​​USB 2.0. Это увеличило скорость передачи данных с ПК на USB-устройство до 480 Мбит/с, что в 40 раз быстрее, чем в спецификации USB 1.1. Благодаря увеличенной пропускной способности периферийные устройства с высокой пропускной способностью, такие как цифровые камеры, устройства для записи компакт-дисков и видеооборудование, теперь можно подключать через USB.

IEEE 1394

IEEE 1394 — это очень быстрый стандарт интерфейса внешней последовательной шины, поддерживающий скорость передачи данных до 400 Мбит/с (в 1394a) и 800 Мбит/с (в 1394b). Это делает его идеальным для устройств, которым необходимо передавать большие объемы данных в режиме реального времени, таких как видеоустройства. Он был разработан Apple под названием FireWire.

К одному порту 1394 можно подключить 63 внешних устройства.

  • Он поддерживает plug and play.
  • Поддерживает горячее подключение.
  • Подает питание на периферийные устройства.

Карта расширения IEEE 1394

Архитектура шины

Ваше мнение здесь

Эта статья является точной и достоверной, насколько известно автору. Контент предназначен только для информационных или развлекательных целей и не заменяет личного совета или профессиональной консультации по деловым, финансовым, юридическим или техническим вопросам.

Вопросы и ответы

Вопрос. Каковы характеристики автобуса?

Ответ: В компьютерах шина определяется как набор физических соединений, то есть проводов или кабелей, которые используются для передачи данных. Они могут совместно использоваться несколькими аппаратными компонентами для связи друг с другом. Таким образом, компьютерная шина характеризуется количеством данных или информации, которые она может передать за один раз. Это количество выражается в битах и ​​соответствует количеству физических линий, по которым данные передаются одновременно. Например, 32-битная шина может передавать 32 бита параллельно.

Вопрос: что такое адресная шина?

Ответ: адресная шина — это ряд проводов, используемых для передачи данных между устройствами, которые идентифицируются аппаратным адресом физической памяти (физический адрес), который хранится в виде двоичных чисел для включения шины данных. для доступа к хранилищу памяти.

Вопрос. Как один USB-порт может поддерживать 127 устройств?

Ответ. К одному порту USB можно подключить до 127 периферийных устройств. Этого можно добиться, используя USB-концентратор. Концентратор подключается к одному USB-порту на вашем компьютере, но обеспечивает несколько USB-подключений для других ваших устройств. Если вы свяжете несколько этих USB-портов, вы сможете подключить необходимое количество USB-устройств. Таким образом, вы получите целых 127 устройств.

Шина, известная также как адресная шина, шина данных или локальная шина, представляет собой соединение между компонентами или устройствами, подключенными к компьютеру. Например, шина передает данные между ЦП и системной памятью через материнскую плату.

Почему компьютерная шина называется шиной?

Компьютерный автобус можно представить себе как общественный транспорт или школьный автобус. Эти типы автобусов способны перевозить людей из одного пункта назначения в другой.Как и эти шины, компьютерная шина передает данные из одного места или устройства в другое место или устройство.

Компьютерная шина работает по строгому расписанию, "забирая" данные и "отправляя их" через равные промежутки времени. Например, если шина работает на частоте 200 МГц, она выполняет 200 миллионов передач данных в секунду. Эта скорость называется шириной шины.

Обзор компьютерной шины

Шина содержит несколько проводов (сигнальных линий) с адресной информацией, описывающей место в памяти, откуда данные отправляются или извлекаются. Каждый провод в шине несет бит(ы) информации, что означает, что чем больше проводов в шине, тем больше информации она может адресовать. Например, компьютер с 32-разрядной адресной шиной может адресовать 4 ГБ памяти, а компьютер с 36-разрядной шиной — 64 ГБ памяти.

На приведенном ниже рисунке показаны различные типы компьютерных шин и то, как они соединяют устройства на материнской плате.

Типы компьютерных шин

Шина — это параллельная или последовательная шина, а также внутренняя шина (локальная шина) или внешняя шина (шина расширения).

Внутренняя шина и внешняя шина

Внутренняя шина обеспечивает связь между внутренними компонентами, такими как видеокарта и память. Внешняя шина может взаимодействовать с внешними периферийными устройствами, такими как USB или SCSI-устройство.

Параллельная шина и последовательная шина

Компьютерная шина может передавать свои данные, используя либо параллельный, либо последовательный метод связи. По параллельной шине данные передаются по несколько битов за раз. Однако при использовании последовательной шины данные передаются по одному биту за раз.

Шина адреса и шина данных

В компьютерной памяти адресная шина компьютера представляет собой шину, содержащую ячейку памяти (адрес памяти), в которой находятся данные в памяти компьютера. Как только компьютер понимает, откуда брать информацию, шина данных используется для передачи этих данных.

Скорость автобуса

Скорость шины компьютера или устройства измеряется в МГц, например, FSB может работать на частоте 100 МГц. Пропускная способность шины измеряется в битах в секунду или мегабайтах в секунду.

Примеры компьютерных шин

Самые популярные компьютерные шины

Сегодня многие из перечисленных выше автобусов больше не используются или встречаются реже. Ниже приведен список наиболее распространенных шин и способов их использования с компьютером.

Читайте также: