Что вы думаете о программном обеспечении для компьютерных сетей?
Обновлено: 21.11.2024
Под компьютерными сетями понимаются подключенные вычислительные устройства (такие как ноутбуки, настольные компьютеры, серверы, смартфоны и планшеты) и постоянно расширяющийся набор устройств Интернета вещей (например, камеры, дверные замки, дверные звонки, холодильники, аудио- и видеосистемы, термостаты и различные датчики), которые взаимодействуют друг с другом.
Связаться с Cisco
Как работает компьютерная сеть
Специализированные устройства, такие как коммутаторы, маршрутизаторы и точки доступа, составляют основу компьютерных сетей.
Коммутаторы подключают компьютеры, принтеры, серверы и другие устройства к сетям в домах или организациях и помогают обеспечить внутреннюю безопасность. Точки доступа — это коммутаторы, которые подключают устройства к сетям без использования кабелей.
Маршрутизаторы соединяют сети с другими сетями и действуют как диспетчеры. Они анализируют данные, которые должны быть отправлены по сети, выбирают для них наилучшие маршруты и отправляют их по назначению. Маршрутизаторы соединяют ваш дом и бизнес со всем миром и помогают защитить информацию от внешних угроз безопасности.
Несмотря на то, что коммутаторы и маршрутизаторы различаются по нескольким параметрам, одно из ключевых отличий заключается в том, как они идентифицируют конечные устройства. Коммутатор уровня 2 однозначно идентифицирует устройство по его «прошитому» MAC-адресу. Маршрутизатор уровня 3 однозначно идентифицирует сетевое подключение устройства с помощью назначенного сетью IP-адреса.
Сегодня большинство коммутаторов включают некоторые функции маршрутизации.
MAC- и IP-адреса однозначно определяют устройства и сетевые подключения соответственно в сети. MAC-адрес — это номер, присвоенный сетевой карте (NIC) производителем устройства. IP-адрес — это номер, присвоенный сетевому соединению.
Как развиваются компьютерные сети?
Современные сети обеспечивают больше, чем возможность подключения. Организации приступают к цифровой трансформации. Их сети имеют решающее значение для этой трансформации и для их успеха. Для удовлетворения этих потребностей развиваются следующие типы сетевых архитектур:
- Программно-определяемая (SDN). В ответ на новые требования «цифровой» эпохи сетевая архитектура становится более программируемой, автоматизированной и открытой. В программно-определяемых сетях маршрутизация трафика управляется централизованно с помощью программных механизмов. Это помогает сети быстро реагировать на изменяющиеся условия.
- На основе намерений. Сеть на основе намерений (IBN), основанная на принципах SDN, не только обеспечивает гибкость, но и настраивает сеть для достижения желаемых целей за счет широкой автоматизации операций, анализа ее производительности, точного определения проблемных областей и предоставления комплексных услуг. безопасности и интеграции с бизнес-процессами.
- Виртуализация. Базовая физическая сетевая инфраструктура может быть логически разделена для создания нескольких «наложенных» сетей. Каждая из этих логических сетей может быть настроена в соответствии с конкретными требованиями безопасности, качества обслуживания (QoS) и другими требованиями.
- На основе контроллера. Сетевые контроллеры имеют решающее значение для масштабирования и защиты сетей. Контроллеры автоматизируют сетевые функции, преобразовывая бизнес-цели в конфигурации устройств, и постоянно контролируют устройства, чтобы обеспечить производительность и безопасность. Контроллеры упрощают работу и помогают организациям реагировать на меняющиеся бизнес-требования.
- Многодоменная интеграция. Крупные предприятия могут создавать отдельные сети, также называемые сетевыми доменами, для своих офисов, глобальных сетей и центров обработки данных. Эти сети взаимодействуют друг с другом через свои контроллеры. Такая межсетевая или многодоменная интеграция обычно включает обмен соответствующими рабочими параметрами, чтобы обеспечить достижение желаемых бизнес-результатов, охватывающих сетевые домены.
Только Cisco предлагает полный набор современных сетевых архитектур для доступа, глобальных сетей, центров обработки данных и облачных сред.
Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.
Что такое компьютерная сеть?
Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).
Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.
Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.
Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.
Типы компьютерных сетей
По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:
Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.
WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.
WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.
MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.
PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.
SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)
CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.
VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.
Важные термины и понятия
Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:
IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.
Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.
Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.
Коммутаторы. Коммутатор — это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:
Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.
Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.
Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.
Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером.Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.
Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.
Примеры компьютерных сетей
Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.
В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.
Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.
The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.
Компьютерные сети и Интернет
Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.
Как они работают?
Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.
Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.
Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.
Архитектура
Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.
Основные типы сетевой архитектуры
В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.
Топология сети
Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.
Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:
При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.
В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.
В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.
сетчатая топология определяется перекрывающимися соединениями между узлами.Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.
Безопасность
Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.
Существует множество точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.
Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.
Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.
Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.
Ячеистые сети
Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.
Тип ячеистых сетей
Существует два типа ячеистых сетей — полная и частичная:
- В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
- беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.
Балансировщики нагрузки и сети
Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.
Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.
Сети доставки контента
Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.
Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.
Компьютерные сетевые решения и IBM
Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг.Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.
Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все это упомянуто выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:
-
— это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.
Сетевые сервисы в IBM Cloud предоставляют вам сетевые решения для повышения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.
Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.
Выпускник Массачусетского технологического института, который привнес многолетний технический опыт в статьи о поисковой оптимизации, компьютерах и беспроводных сетях.
В этой статье
Перейти к разделу
По сравнению с домашней и деловой средой, компьютеры в начальных и средних школах подключаются к сети без шума и помпы. Школьные сети предлагают преимущества учителям и ученикам, но этот мощный инструмент имеет свою цену. Эффективно ли школы используют свои сети? Должны ли все школы быть полностью объединены в сеть, или налогоплательщики не получат справедливой выгоды от усилий по «подключению»?
Крис Райан / Getty Images
Обещание
Школы могут извлечь выгоду из компьютерных сетей во многом так же, как корпорации или семьи. Потенциальные преимущества включают:
- Быстрый доступ к дополнительной информации.
- Улучшенное общение и совместная работа.
- Более удобный доступ к программным инструментам.
Теоретически учащиеся, работающие в сетевой среде в школе, будут лучше подготовлены к будущей работе в отрасли. Сети могут помочь учителям составлять более качественные онлайн-планы уроков и формы из разных мест — нескольких классов, комнат отдыха для персонала и их дома. Короче говоря, возможности школьных сетей кажутся почти безграничными.
Основные сетевые технологии
Студенты и преподаватели заинтересованы в работе с сетевыми программными приложениями, такими как веб-браузеры и почтовые клиенты. Для поддержки этих приложений школы должны сначала внедрить несколько других технологий. В совокупности эти компоненты иногда называют архитектурой, инфраструктурой или инфраструктурой, необходимой для поддержки сети конечных пользователей:
- Компьютерное оборудование.
- Сетевые операционные системы.
- Сетевое оборудование.
Компьютерное оборудование
В школьной сети можно использовать несколько различных типов оборудования. Настольные компьютеры обеспечивают наибольшую сетевую гибкость и вычислительную мощность, но если важна мобильность, то могут подойти ноутбуки.
Портативные устройства представляют собой более дешевую альтернативу ноутбукам для учителей, которым нужны базовые возможности мобильного ввода данных. Учителя могут использовать портативную систему, например, чтобы делать заметки во время урока, а затем загружать или синхронизировать свои данные с настольным компьютером.
Носимые устройства расширяют концепцию компактных портативных устройств еще на один шаг вперед. Помимо различных применений, носимые устройства могут освободить руки человека или расширить возможности обучения. Носимые приложения остаются за рамками основного направления сетевых вычислений.
Сетевые операционные системы
Операционная система — это основной программный компонент, управляющий взаимодействием между людьми и их компьютерным оборудованием. Современные карманные компьютеры и носимые устройства обычно поставляются с собственными операционными системами.
Однако с настольными компьютерами и ноутбуками часто бывает наоборот. Иногда школы могут приобретать эти компьютеры без установленной операционной системы или (чаще всего) предустановленную операционную систему можно заменить на другую.
Сетевое оборудование
Портативные и носимые устройства обычно имеют встроенное оборудование для работы в сети.Однако для настольных и портативных компьютеров сетевые адаптеры часто необходимо выбирать и приобретать отдельно. Дополнительные специализированные аппаратные устройства, такие как маршрутизаторы и концентраторы, также необходимы для расширенных и интегрированных сетевых возможностей.
Применения и преимущества
В большинстве начальных и средних школ есть доступ к Интернету и электронной почте. К другим популярным приложениям в школах относятся текстовые редакторы и программы для работы с электронными таблицами, инструменты для разработки веб-страниц и среды программирования.
Школа, полностью подключенная к сети, может предложить учащимся и учителям несколько преимуществ:
- Учащиеся могут обмениваться файлами быстрее и надежнее. Центральные принтеры можно сделать более доступными для учащихся.
- Учителя могут эффективно поддерживать повседневное общение друг с другом с помощью электронной почты и обмена сообщениями. Они могут легко распространять среди учащихся новости и информацию о классных проектах.
- Учащиеся могут совместно работать над групповыми проектами с помощью сетевых приложений.
Эффективные школьные сети
Школьные сети не бесплатны. Помимо первоначальных затрат на оборудование, программное обеспечение и время настройки, администратор должен постоянно управлять сетью. Необходимо позаботиться о том, чтобы записи занятий учащегося и другие файлы были защищены. Может потребоваться установить квоты дискового пространства на общих системах.
Школы должны уделять особое внимание школьным сетям, имеющим доступ в Интернет. Необходимо отслеживать и контролировать ненадлежащее использование игр, социальных сетей или сайтов для взрослых.
Почти невозможно количественно измерить ценность школьной сети. В корпоративных интранет-проектах сложно рассчитать общую рентабельность инвестиций (ROI), а проблемы со школами более субъективны.
Хорошо рассматривать сетевые школьные проекты как эксперимент с потенциалом огромной отдачи. Ожидайте, что школы продолжат полностью объединяться в сети, а образовательные возможности этих сетей будут развиваться быстрыми темпами.
Читайте также: