При включении компьютера процессор вызывает

Обновлено: 05.07.2024

Компьютеры и программное обеспечение идут рука об руку. Компьютеры сильны, потому что они могут делать много вещей, а программы — это то, как мы заставляем компьютеры делать все это.

Видео: что такое программирование?

Компьютерное оборудование

  1. Центральный процессор (ЦП)
  2. Основная память (оперативная память или ОЗУ)
  3. Дополнительные устройства хранения
  4. Устройства ввода
  5. Устройства вывода

ЦП

ЦП — это сердце компьютера. Программа – это последовательность инструкций, хранящихся в оперативной памяти. Когда программа запускается, ЦП получает инструкции и выполняет или следует инструкциям.

Цикл выборки/декодирования/выполнения

  • fetch — получение следующей инструкции из основной памяти.
  • декодировать — определить, какую инструкцию выполнять.
  • выполнить — выполнить инструкцию.

Каждая программа заканчивается последовательностью основных инструкций, состоящих из арифметических и логических операций, а также операций управления потоком.

Арифметические и логические операции включают сложение, вычитание, умножение, деление и сравнение значений (равенство, меньше, больше).

Операции потока управления используются для определения следующей инструкции. Например, в зависимости от инструкции программа может пропустить или перейти к другой части списка инструкций.

Вы узнаете подробности о том, как ЦП обрабатывают инструкции в CS 271, Компьютерная архитектура и язык ассемблера.

Основная память

Основная память или ОЗУ используется для хранения программы во время ее выполнения и для хранения данных, с которыми работает программа.

Сведения об оперативной памяти

  • ЦП может быстро получить доступ к любому месту в ОЗУ.
  • ОЗУ называется энергозависимой памятью. В отличие от постоянного хранилища, когда компьютер выключается или когда программа завершает выполнение, значения, хранящиеся в ОЗУ, стираются.
  • ОЗУ делится на единицы хранения, называемые байтами. Байт — это последовательность из восьми битов.
  • Бит — это наименьший элемент ОЗУ, в нем хранится двоичная цифра, 0 или 1. Каждая программа и каждое значение данных на вашем компьютере хранится в виде последовательностей нулей и ls.

Дополнительное хранилище

Вторичное хранилище обеспечивает длительное и постоянное хранение. В отличие от оперативной памяти, данные, хранящиеся во вторичном хранилище, не исчезают при выключении или перезагрузке компьютера. Наиболее распространенной формой вторичного хранилища для больших компьютеров является дисковый накопитель, но компьютеры могут использовать и другие формы вторичного хранилища, например твердотельные накопители, в которых используются микросхемы памяти, сохраняющие значения данных без питания.

Как и в основной памяти, во вторичном хранилище также хранится информация в виде последовательностей нулей и единиц в виде битов и байтов.

Устройства ввода

Обычно мы думаем о клавиатурах и мышах, но устройства ввода могут включать в себя камеры, микрофоны и многие другие типы различных датчиков, когда вы начинаете думать о компьютерах, встроенных в автомобили, электронику и почти любое электрическое устройство.

Устройства вывода

Информация, которую компьютер отправляет во внешний мир, называется выводом. Если задействован человек, выходные данные обычно отправляются на устройство вывода, такое как экран компьютера или принтер. Не все программы будут выводить данные на устройство вывода. Вместо этого выходные данные могут быть отправлены по компьютерной сети или сохранены в базе данных.

Видео: аппаратное и программное обеспечение

Программы и языки программирования

Как сказано выше, программирование включает в себя создание набора инструкций, которым компьютер будет следовать, чтобы решить проблему или выполнить задачу. Давайте уточним нашу терминологию в этом разделе.

Алгоритмы

Алгоритм задает конечную последовательность четко определенных операций для решения конкретной проблемы или класса проблем. Шаги алгоритма можно описать разными способами, включая слова (также известные как естественный язык), блок-схемы, псевдокод (описанный ниже) и код языка программирования.

По мере увеличения сложности задач важно разрабатывать алгоритмы, которые будут эффективными (т. е. быстрыми) и правильными в том смысле, что они будут давать указанный результат для любых допустимых входных данных. На курсе CS 325 "Анализ алгоритмов" вы узнаете о методах анализа сложности и доказательства правильности.

Превращение алгоритмов в программы

Алгоритм может быть реализован на многих различных компьютерных языках, и одна программа может использовать или реализовывать множество различных алгоритмов. Например, вы можете использовать алгоритм сортировки для упорядочивания сообщений и алгоритм расшифровки для понимания сообщений.

Машинный код, язык ассемблера и компиляторы

ЦП компьютера выполняет инструкции вашей программы. Однако пока вы пишете программу на таком языке, как C++, процессор компьютера может следовать только инструкциям, закодированным как последовательность Os и s.Программный компилятор — это специальная программа, которая преобразует операторы, написанные на языке программирования, в двоичную форму (Os и s>, называемую машинным кодом. Поскольку нам трудно распознать последовательности 0 и 1, существует низкоуровневая (близкая к аппаратной ) язык программирования, называемый языком ассемблера, который использует короткие сокращения и шаблоны для описания того, что должен делать ЦП. Например, оператор ассемблера "MOV AL, 61h;" означает копирование следующего значения (61h, шестнадцатеричное представление 97) в ячейку памяти " АЛ".

Вы узнаете гораздо больше о машинном коде и языке ассемблера в CS 271, Архитектура компьютера и язык ассемблера.

Языки высокого уровня

В этом классе вы изучите C++, язык высокого уровня. Языки высокого уровня — это компьютерные языки, которые скрывают многие низкоуровневые детали компьютерной системы и, как правило, используют более естественные слова и символы по сравнению со словами, такими как «MOV», на языке ассемблера, который является языком низкого уровня.

C++ — один из многих языков высокого уровня. Чтобы увидеть текущую популярность всех компьютерных языков, перейдите в индекс TIOBE.

Исходный код, объектный код и исполняемый код

Исходный код

Когда вы начнете создавать программы в этом классе, вы будете создавать исходный код. Исходный код сохраняется в простом текстовом файле, называемом исходным файлом.

Преобразование исходного кода в исполняемый код

Ваш компьютер не понимает исходный код. Вы должны использовать компилятор для преобразования исходного кода в исполняемый код, который вы можете запустить и запустить на своем компьютере.

Во время преобразования исходного кода в исполняемый файл компилятор C++ создаст объектный код.

Исходный код преобразуется компилятором в так называемый объектный код. Объектный код программы на C++ сохраняется в файлах с суффиксом .o или .obj. На последнем этапе, называемом связыванием, объектные файлы объединяются с любыми библиотечными подпрограммами (подпрограммами, предоставленными языком для использования вами) для создания окончательного исполняемого файла с расширением .exe.

В зависимости от того, как вы скомпилируете свою программу, вы можете видеть или не видеть различные этапы преобразования исходных файлов в исполняемый файл. Например, во многих IDE (интегрированных средах разработки, таких как Visual Studio, Code:: Blocks или XCode) промежуточные шаги выполняются автоматически, поэтому вы можете нажать кнопку «сборка», и исполняемый файл будет создан.

Из чего состоит программа?

Языковые элементы

Большинство языков программирования включают следующие элементы.

Ключевые слова

Ключевые слова – это слова, имеющие особое значение в языке. Их можно использовать только по прямому назначению. Также известны как зарезервированные слова.

Определяемые программистом идентификаторы

Идентификаторы, определяемые программистом, — это слова, которые вы выбираете как программист для определения переменных или процедур программирования.

Операторы

Операторы выполняют операции над одним или несколькими операндами. Операнд — это часть данных. Различные арифметические символы, такие как +, * и /, являются примерами операторов.

Пунктуация

Знаки препинания отмечают начало или конец оператора или отдельных элементов в списке.

Синтаксис

Правила, которые необходимо соблюдать при построении программы. Эти правила определяют, как вы можете комбинировать ключевые слова, определенные программистом идентификаторы, операторы и знаки пунктуации.

Специфика C++. Вы начнете изучать элементы языка, характерные для C++, в главе 2.

Строки и операторы

Мы часто думаем, что программы состоят из строк и операторов. Строка — это всего лишь одна строка в программе. Вы можете отображать номера строк в большинстве редакторов исходного кода IDE. В Visual Studio 2013 их необходимо включить, поскольку по умолчанию они отключены. Вы часто будете видеть ссылки на номера строк, когда компилируете свою программу и у вас возникает ошибка.

программа, отображающая номера строк и код в примере программы под названием hello world

На снимке экрана показана программа с ошибкой. Когда программа была скомпилирована, выходные данные (серые окна выше) включали «source.cpp(B)», что указывало на то, что проблема была в строке 8 файла с именем source. цена за тысячу показов

Инструкция — это полная инструкция, которая заставляет компьютер выполнить какое-либо действие. Оператор может занимать более одной строки. Значение оператора станет более понятным, как только вы начнете программировать в главе 2.

Переменные

Инструкция — это полная инструкция, которая заставляет компьютер выполнить какое-либо действие. Оператор может занимать более одной строки. Значение оператора станет более понятным, как только вы начнете программировать в главе 2.

Ввод и вывод

Двумя наиболее важными факторами при программировании являются ввод и вывод.Многие из программ, которые вы напишете для классных заданий, будут использовать ввод с клавиатуры. Программа запросит ввод, и вы наберете ответ. По мере прохождения программы обучения вы приобретете опыт работы с файлами, базами данных, веб-ресурсами и другими источниками ввода.

Во многих, если не во всех заданиях CS 161, вы будете направлять вывод программы на консоль. Вы не часто видите вывод консоли, если запускаете приложения в Windows или OS X, потому что эти типы прикладных программ используют графические пользовательские интерфейсы (GUI). Однако программирование с графическим интерфейсом добавляет гораздо больше работы по созданию программы, и наша работа в CS 161 состоит в том, чтобы научить вас основам программирования, поэтому мы будем придерживаться консольного вывода.

Пример вывода в консоль

консольный вывод программа, выводящая текст hello world

Активность

Выберите хотя бы одно занятие, которое учащиеся могут активно вовлечь в изучение материала. Чем больше, тем лучше!

Просмотреть

Обобщите содержание раздела. Кроме того, не забудьте связать материал с тем, что будет дальше, чтобы помочь учащимся связать этот материал со следующим материалом.

План North American Electric Reliability Corporation по защите критически важной инфраструктуры (NERC CIP) представляет собой набор стандартов.

Структура управления рисками ISO 31000 – это международный стандарт, который предоставляет компаниям рекомендации и принципы для .

Чистый риск относится к рискам, которые находятся вне контроля человека и приводят к убыткам или их отсутствию без возможности получения финансовой выгоды.

Экранированная подсеть или брандмауэр с тройным подключением относится к сетевой архитектуре, в которой один брандмауэр используется с тремя сетями .

Метаморфное и полиморфное вредоносное ПО – это два типа вредоносных программ (вредоносных программ), код которых может изменяться по мере их распространения.

В контексте вычислений Windows и Microsoft Active Directory (AD) идентификатор безопасности (SID) — это уникальное значение, которое равно .

Медицинская транскрипция (МТ) – это ручная обработка голосовых сообщений, продиктованных врачами и другими медицинскими работниками.

Электронное отделение интенсивной терапии (eICU) — это форма или модель телемедицины, в которой используются самые современные технологии.

Защищенная медицинская информация (PHI), также называемая личной медицинской информацией, представляет собой демографическую информацию, медицинскую .

Снижение рисков – это стратегия подготовки к угрозам, с которыми сталкивается бизнес, и уменьшения их последствий.

Отказоустойчивая технология — это способность компьютерной системы, электронной системы или сети обеспечивать бесперебойное обслуживание.

Синхронная репликация — это процесс копирования данных по сети хранения, локальной или глобальной сети, поэтому .

Интерфейс управления облачными данными (CDMI) – это международный стандарт, определяющий функциональный интерфейс, используемый приложениями.

Износ флэш-памяти NAND — это пробой оксидного слоя внутри транзисторов с плавающим затвором флэш-памяти NAND.

Выносливость при записи — это количество циклов программирования/стирания (P/E), которое может быть применено к блоку флэш-памяти перед сохранением .

Центральный процессор (ЦП) направляет компьютер на различные этапы решения проблемы.

Связанные термины:

Скачать в формате PDF

Об этой странице

Адаптация и оценка симплексного алгоритма для архитектуры потока данных

Урош Чибей, Юрий Михелич, Достижения в области компьютеров, 2017

2.2 Вид программиста

Чтобы программист мог разработать законченную программу, необходимо написать три компонента.

обычно написанный на языке программирования C, код ЦП управляет выполнением и использует DFE в качестве блока обработки, вызывая подходящие функции, предоставляемые компилятором Maxeler.

Каждое ядро ​​реализует определенную функциональность и примерно соответствует абстракции функции. Он имеет набор входных потоков и набор выходных потоков.

Менеджер — это компонент, который соединяет потоки данных от ЦП к ядрам-получателям и наоборот. Он устанавливает соединения между ядрами и LMem, а также связывает ядра между собой. Диспетчер также создает интерфейсы, с помощью которых код ЦП взаимодействует с DFE.

Диспетчер и ядра написаны на предметно-ориентированном языке MaxJ. Этот язык представляет собой надмножество языка программирования Java с несколькими расширениями, более подходящими для упрощения создания программ потока данных.

Компилятор преобразует описание ядер в граф потока данных, и этот граф физически размещается на микросхеме FPGA серверной частью.Серверная часть обычно очень требовательна к вычислительным ресурсам, поскольку необходимо учитывать множество структурных ограничений.

Схема этой архитектуры представлена ​​на рис. 1.

< бр />

Рис. 1 . Схематический обзор компонентов системы потока данных. серая рамка обозначает микросхему FPGA. Взгляд программиста на архитектуру показан в виде файлов, которые необходимо реализовать для каждой программы, файл .maxj написан на языке MaxJ, тогда как поток управления обычно написан на C или C++, но поддерживаются и другие языки. .

КОМПЬЮТЕРНЫЙ ДИЗАЙН

Доминик Росато, Дональд Росато, Дизайн изделий из пластмассы, 2003 г.

Центральный процессор

Центральный процессор компьютера (ЦП) — это часть компьютера, которая извлекает и выполняет инструкции. Процессор, по сути, является мозгом CAD-системы. Он состоит из арифметико-логического блока (АЛУ), блока управления и различных регистров. Центральный процессор часто называют просто процессором. АЛУ выполняет арифметические операции, логические операции и связанные с ними операции в соответствии с инструкциями программы.

Блок управления управляет всеми операциями ЦП, включая операции АЛУ, перемещение данных внутри ЦП, а также обмен данными и управляющими сигналами через внешние интерфейсы (системную шину). Регистры — это быстродействующие блоки внутренней памяти ЦП. Некоторые регистры видны пользователю; то есть доступный для программиста через набор машинных инструкций. Другие регистры предназначены исключительно для ЦП в целях управления. Внутренние часы синхронизируют все компоненты ЦП. Тактовая частота (количество тактовых импульсов в секунду) измеряется в мегагерцах (МГц) или миллионах тактовых импульсов в секунду. Тактовая частота, по сути, определяет, насколько быстро ЦП обрабатывает инструкции.

Оборудование

Центральный процессор управляет всем. Он извлекает программные инструкции по своей шине «на стороне инструкций» (IS), считывает данные по своей шине «на стороне данных» (DS), выполняет инструкции и записывает результаты на шину DS. ЦП может работать на частоте SYSCLK до 80 МГц, что означает, что он может выполнять одну инструкцию каждые 12,5 нс. ЦП способен умножать 32-битное целое число на 16-битное целое число за один цикл или 32-битное целое число на 32-битное целое число за два цикла. Блока с плавающей запятой (FPU) нет, поэтому вычисления с плавающей запятой выполняются программными алгоритмами, что делает операции с плавающей запятой намного медленнее, чем вычисления с целыми числами.

ЦП представляет собой ядро ​​микропроцессора MIPS32® M4K®, лицензированное компанией Imagination Technologies. ЦП работает при напряжении 1,8 В (обеспечиваемом стабилизатором напряжения, встроенным в PIC32, поскольку он используется на плате NU32). Контроллер прерываний, обсуждаемый ниже, может уведомлять ЦП о внешних событиях.

Встроенные процессоры

Внутренние шины ЦП

Шины ЦП — это механизмы, соединяющие другие компоненты ЦП: АЛУ, ЦП и регистры (см. рис. 4-22). Шины — это просто провода, которые соединяют между собой различные другие компоненты ЦП. Провод каждой шины обычно делится на логические функции, такие как данные (которые переносят данные в двух направлениях между регистрами и АЛУ), адрес (который переносит расположение регистров, содержащих данные для передачи), управление (переносит управление информацию о сигналах, такую ​​как временные и управляющие сигналы, между регистрами, ALU и CU) и т. д.

< бр />

Рисунок 4-22. Ядро и шины PowerPC. [15]

В ядре PowerPC есть управляющая шина, по которой управляющие сигналы передаются между АЛУ, CU и регистрами. То, что PowerPC называет «исходными шинами», — это шины данных, передающие данные между регистрами и АЛУ. Существует дополнительная шина, называемая обратной записью, которая предназначена для обратной записи данных, полученных с исходной шины, непосредственно обратно из модуля загрузки/сохранения в фиксированные регистры или регистры с плавающей запятой.

Примечание. Во избежание дублирования автобусы будут более подробно обсуждаться в главе 7 .

Микрокомпьютерная аппаратура и управление

Чтение/запись памяти

ЦП всегда контролирует направление потока данных в БД, поскольку, хотя он и является двунаправленным, данные могут перемещаться только в одном направлении за раз. ЦП выдает специальный сигнал управления чтением/записью (R/W) (рис. 3.2), который активирует схемы в памяти, определяющие направление потока данных. Например, когда на линии чтения/записи (R/W) высокий уровень, ЦП передает информацию из ячейки памяти в ЦП.

Временная диаграмма операции чтения из памяти показана на рис. 3.3.

< бр />

Рис. 3.3. Время чтения/записи.

Предположим, что компьютеру была дана инструкция прочитать данные из ячейки памяти номер 10. Чтобы выполнить операцию чтения, ЦП переводит линию чтения/записи в высокий уровень, чтобы активировать схему памяти при подготовке к операции чтения. Практически одновременно на АБ размещается адрес для местоположения 10 («адрес действителен» на рис. 3.3). В память АБ отправляется число 10 в 16-битном двоичном коде (0000 0000 0000 1010). Двоичные электрические сигналы, соответствующие 10, управляют определенными цепями в памяти, чтобы заставить двоичные данные в этом месте быть помещенными в БД. ЦП имеет внутренний регистр, который активируется во время этой операции чтения для приема и сохранения данных. Затем данные обрабатываются ЦП во время следующего цикла работы в соответствии с соответствующей инструкцией.

Аналогичная операция выполняется всякий раз, когда ЦП должен отправить данные из одного из своих внутренних регистров в память, что является операцией «записи». В этом случае линия R/W будет установлена ​​на логический уровень, противоположный операции чтения (т.е. низкий в данном примере). Во время операции записи отправляемые данные помещаются в БД одновременно с адресом назначения в АВ. Эта операция перенесет данные из источника ЦП в место назначения, которым может быть место в памяти в ОЗУ или внешнее устройство (как будет объяснено позже).

Компьютерные системы

1.3.1 Работа системы

ЦП управляет передачей системных данных по шинам данных и адреса и дополнительным линиям управления. Требуется схема часов, обычно содержащая кварцевый генератор (как в цифровых часах); это создает точный сигнал фиксированной частоты, который управляет микропроцессором. Операции ЦП запускаются по переднему и заднему фронтам тактового сигнала, что позволяет определить их точную синхронизацию. Это позволяет событиям в ЦП выполняться в правильной последовательности с достаточным временем для каждого шага. Центральный процессор генерирует все основные управляющие сигналы на основе часов. Тот или иной ЦП можно использовать в различных системах, в зависимости от типа приложения, необходимого объема памяти, требований к вводу-выводу и т. д.

Декодер адреса управляет доступом к памяти и регистрам ввода-вывода для конкретного проекта. Как правило, программируемое логическое устройство (PLD) используется для выделения каждой микросхеме памяти определенного диапазона адресов. Код входного адреса в определенном диапазоне генерирует выходной сигнал выбора микросхемы, который включает это устройство. Регистры портов ввода-вывода, которые настроены для обработки передачи данных в систему и из нее, также получают определенные адреса с помощью того же механизма, и ЦП обращается к ним так же, как к ячейкам памяти. Назначение адресов конкретным периферийным устройствам называется картой памяти (рис. 1.6 б).

Процессор

ХАРВИ М. ДЕЙТЕЛЬ, БАРБАРА ДЕЙТЕЛЬ, Введение в обработку информации, 1986 г.

Сводка издателя

Центральный процессор (ЦП) направляет компьютер на различные этапы решения проблемы. Данные поступают в компьютер через блок ввода, обрабатываются центральным процессором и затем становятся доступными для пользователя через блок вывода. Логический вид компьютера показывает, какие функции выполняет компьютер. Физический вид компьютера показывает, как на самом деле механизмы компьютера выполняют эти функции. Центральный процессор состоит из трех логических блоков: арифметико-логического блока (ALU), основного хранилища и блока управления. Основная память сохраняет активные программы и данные. Это относительно дорого, поэтому вторичное хранилище используется для хранения программ и данных до тех пор, пока они не потребуются в основном хранилище. Набор встроенных операций компьютера называется его «набором инструкций». Компьютерная программа представляет собой набор инструкций, которые сообщают компьютеру, как решить конкретную задачу. Компьютерная программа должна находиться в оперативной памяти, чтобы компьютер мог выполнять ее инструкции.

Управление энергопотреблением

5.15.2.4.2.1 Блок процессора

Это центральный процессор (ЦП) ПЛК, то есть микропроцессор по конструкции и функциональным возможностям. Основная функция этого блока состоит в том, чтобы воспринимать входные значения через свои модули ввода/вывода, генерировать управляющие сигналы в соответствии с входными сигналами и предопределенной инструкцией (хранящейся в блоке памяти в виде программы). Затем обработанное решение передается на устройства вывода, подключенные к модулям ввода/вывода, для обновления выходных переменных [51]. Типичный цикл процесса ЦП показан на рис. 40, демонстрирующем основную идею функции процесса. Время одного цикла выполнения программы называется «время сканирования». Типичные значения времени сканирования могут составлять всего 1 м/с.Входные и выходные значения обычно хранятся в единице памяти за цикл или несколько его кратных [53] .

< бр />

Рис. 40 . Рабочий цикл центрального процессора (ЦП) программируемого логического контроллера (ПЛК).

Беспроводная МЭМС для носимых сенсорных сетей

5.2.2.2 Блок обработки

Рабочие процедуры промышленной системы управления

(1) адресные пространства PCI

ЦП и все устройства PCI должны иметь доступ к общей памяти. Драйверы устройств управляют устройствами PCI и передают информацию между ними, используя эту память. Обычно эта разделяемая память содержит регистры управления и состояния устройства, которые используются для управления устройством и чтения его состояния. Например, драйвер устройства PCI SCSI может прочитать свой регистр состояния, чтобы узнать, готово ли устройство к записи блока информации, или он может записать в управляющий регистр, чтобы запустить устройство после его включения.

Системная память ЦП может использоваться для этой общей памяти, но в этом случае каждый раз, когда устройство PCI обращается к памяти, ЦП должен будет останавливаться, ожидая завершения. Доступ к памяти обычно ограничивается одним системным компонентом за раз. Это замедлит работу системы. Это не позволяет периферийным устройствам системы бесконтрольно обращаться к основной памяти. Это было бы очень опасно; неисправное устройство может сделать систему очень нестабильной.

Периферийные устройства имеют собственные области памяти. ЦП может получить доступ к этим пространствам, но доступ устройств к системной памяти очень строго контролируется с помощью каналов DMA (прямой доступ к памяти). Устройства ISA имеют доступ к двум адресным пространствам; ISA I/O (ввод/вывод) и память ISA. В большинстве современных микропроцессоров PCI должен состоять из трех элементов: ввода-вывода PCI, памяти PCI и пространства конфигурации PCI.

Некоторые микропроцессоры, например процессор Alpha AXP, не имеют естественного доступа к адресным пространствам, отличным от системного адресного пространства. Этот процессор использует наборы микросхем поддержки для доступа к другим адресным пространствам, таким как пространство конфигурации PCI, с помощью схемы разреженного отображения адресов, которая крадет часть большого виртуального адресного пространства и сопоставляет его с адресными пространствами PCI.

Компьютер, на котором вы читаете эту страницу, использует для своей работы микропроцессор. Микропроцессор является сердцем любого обычного компьютера, будь то настольный компьютер, сервер или ноутбук. Существует множество типов микропроцессоров, но все они делают примерно одно и то же примерно одинаково.

Микропроцессор, также известный как центральный процессор или центральный процессор, представляет собой законченный вычислительный механизм, созданный на одном кристалле. Первым микропроцессором был Intel 4004, представленный в 1971 году. 4004 был не очень мощным — все, что он мог делать, это складывать и вычитать, и он мог делать это только 4 бита за раз. Но было удивительно, что все было на одном чипе. До 4004 инженеры строили компьютеры либо из наборов микросхем, либо из отдельных компонентов (транзисторов, соединенных по одному). На базе 4004 был создан один из первых портативных электронных калькуляторов.

Если вы когда-нибудь задумывались о том, что делает микропроцессор в вашем компьютере, или если вы когда-нибудь задумывались о различиях между типами микропроцессоров, читайте дальше. В этой статье вы узнаете, как довольно простые приемы цифровой логики позволяют компьютеру выполнять свою работу, будь то игра или проверка орфографии в документе!

Развитие микропроцессоров: Intel

Представленный Intel в 1974 году, микропроцессор 8080 стал первым микропроцессором, достаточно мощным для создания компьютера. Библиотека изображений «Наука и общество»/Getty Images

С 2004 года корпорация Intel представила многоядерные микропроцессоры и еще миллионы транзисторов. Но даже эти микропроцессоры подчиняются тем же общим правилам, что и более ранние чипы.

Процессор Intel Core i9 может иметь до восьми ядер, каждое из которых может выполнять любой фрагмент кода, работавший на исходном 8088, всего примерно в 6700 раз быстрее! Каждое ядро ​​может обрабатывать несколько потоков инструкций, что позволяет компьютеру более эффективно управлять задачами.

С 1970-х годов ассортимент продукции Intel значительно расширился. На момент написания этой статьи компания по-прежнему производит процессоры Pentium и Core для компьютеров, но более производительные ПК и серверы могут использовать чип Xeon. Кроме того, Intel предлагает линейки процессоров Celeron и Atom. Celeron предназначен для пользователей компьютеров начального уровня, а процессоры Atom лучше подходят для мобильных устройств и устройств, являющихся частью Интернета вещей.

Несмотря на то, что Intel по-прежнему занимает значительную долю рынка, у нее больше конкурентов, чем ее справедливая доля.AMD конкурирует с Intel на рынке процессоров для ПК, но также имеет большой бизнес в области чипов для графических процессоров, которые популярны среди геймеров. Nvidia, известная своими графическими чипами, также производит процессоры. В 2020 году Apple представила свои чипы серии M, которые заменяют чипы Intel, которые Apple использовала для своих компьютеров Macintosh. Samsung также может работать над собственным дизайном процессоров. Многие другие компании производят процессоры для других применений электроники, таких как автомобили и продукты для умного дома. Рынок становится все более и более конкурентным.

Чип также называют интегральной схемой. Как правило, это небольшой тонкий кусочек кремния, на котором выгравированы транзисторы, из которых состоит микропроцессор. Чип может быть размером с дюйм со стороны и содержать десятки миллионов транзисторов. Более простые модели могут состоять из нескольких тысяч транзисторов, выгравированных на чипе площадью всего несколько квадратных миллиметров. Стало обычным видеть чипы во всевозможных устройствах с несколькими ядрами, каждое из которых является процессором.

Читайте также: