Итак, вы протестировали все, от материнской платы до дисковода. Все еще есть проблемы? Вы пробовали проверить блок питания? Этот ежедневный обзор от Фейт Вемпен дает вам представление о том, что нужно искать.
Из всех компонентов ПК большинство технических специалистов меньше всего разбираются в блоке питания. Это печально, потому что блоки питания не так уж и сложны, и они часто являются причиной загадочных, трудноразрешимых проблем. В этом ежедневном обзоре я объясню некоторые основы блоков питания, в том числе то, как они работают, какие типы доступны и как проверить правильность их работы.
Многие блоки питания также генерируют -5 В и -12 В, но эти отрицательные напряжения редко используются в современных системах, а некоторые новые блоки питания даже не обеспечивают поддержку -5 В. Поддержка -5V является частью стандарта ISA, но новые системы, выпускаемые сегодня, как правило, поддерживают только PCI, поэтому эта поддержка им не требуется.
Стиль LPX является потомком блоков питания типа Baby-AT, AT/Tower и AT/Desk и используется в основном с материнскими платами типа Baby-AT. Тип ATX используется с материнскими платами ATX, Micro-ATX и NLX. Выбирая блок питания, вы должны убедиться, что он не только соответствует типу материнской платы (чтобы разъемы подходили), но и подходил к корпусу, который вы используете. Блоки питания в стиле LPX имеют два шестиконтактных разъема для подключения к материнской плате, а блоки питания в стиле ATX имеют один 20-контактный разъем. См. Таблицу A и Таблицу B для получения подробной информации о том, что делает каждый вывод.
Для блока питания типа LPX (компьютеры AT) предусмотрено два разъема: P8 и P9. У каждого есть шесть контактов, и вы подключаете их к материнской плате, чтобы черные провода были вместе.
Для блока питания формата ATX используется один 20-контактный разъем, два ряда по десять проводов. Перечисленные здесь цвета являются частью стандарта ATX, но не являются обязательными, поэтому некоторые системы других производителей могут отличаться.
Таблица B PIN | НАЗНАЧЕНИЕ |
Контакт 1 (оранжевый) | + 3,3 В |
Контакт 2 (оранжевый) | +3,3 В |
Контакт 3 (черный) | Заземление |
Контакт 4 (красный) | +5V |
Контакт 5 (черный) | Заземление |
Контакт 6 (красный) | +5V |
< tr> Контакт 7 (черный) | Заземление | Контакт 8 (серый) | Power_Good | < /tr>
Контакт 9 (фиолетовый) | +5VSB (режим ожидания) |
Контакт 10 (желтый) | < td>+12 В
Контакт 11 (оранжевый или коричневый) | +3,3 В |
Контакт 12 (Синий) | -12V |
Контакт 13 (Черный) | Заземление |
Контакт 14 (зеленый) | PS_On |
Контакт 15 (черный) | Заземление | tr>
Контакт 16 (черный) | Заземление |
Контакт 17 (черный) | Заземление td> |
Контакт 18 (белый) | -5V |
Контакт 19 (красный)< /td> | +5V |
Контакт 20 (красный) | +5V |
стол>
Обратите внимание, что на разъеме типа ATX все провода одного цвета имеют одинаковое напряжение или функции. Например, все красные провода — это +5 В, а все черные — заземление.
Производители блоков питания по запросу предоставят вам технические характеристики своих блоков питания, но типичный блок питания LPX мощностью 250 Вт может выйти из строя следующим образом:
- +5 В — максимум 25 А (125 Вт).
- +12 В — не более 10 А (120 Вт).
- -5 В — максимум 0,5 А (2,5 Вт).
- -12 В — максимум 0,5 А (2,5 Вт).
Для ATX мощностью 235 Вт вы можете увидеть примерно следующее:
- +5 В — максимум 22 А (110 Вт).
- +3,3 В — максимум 14 А (46,2 Вт).
- Вместе +5 В и +3,3 В — максимум 125 Вт.
- +12 В — максимум 8,0 А (96 Вт).
- +-5 В — максимум 0,5 А (2,5 Вт).
- -12 В — максимум 1 А (12 Вт).
Обратите внимание, что для приведенных выше характеристик комбинация +5 В и +3,3 В не может превышать 125 Вт. Это обеспечивает максимальную гибкость мощности при сохранении ограничения в 235 Вт.
Не всегда легко получить данные о энергопотреблении различных компонентов вашей системы, но вы можете использовать следующие приблизительные цифры для консервативных расчетов. Эти числа представляют максимум для каждого компонента; фактическая сумма розыгрыша, вероятно, будет меньше.
- Материнская плата: 5 А при напряжении +5 В или +3,3 В и 0,7 А при напряжении +12 В.
- Печатные платы ISA — 2 А при +5 В и 0,175 В при +12 В.
- Печатные платы PCI: 5 А при +5 В, 0,5 А при +12 В и 7,6 А при +3,3 В.
- Приводы CD-ROM: 1 А при напряжении +5 В и 1 А при напряжении +12 В.
- Диск для гибких дисков 3 œ” – 0,5 А при напряжении +5 В и 1 А при напряжении +12 В.
- Диск для гибких дисков 5 Ом – 1 А при напряжении +5 В и 2 А при напряжении +12 В.
Когда накопитель раскручивается, ему требуется примерно в два раза больше обычного питания +12 В, поэтому при расчете необходимого тока +12 В удвойте измерение.
Мощность блока питания — это максимальная мощность, на которую он способен. Чрезвычайно мощный блок питания в малонагруженной системе — это пустая трата времени, потому что система потребляет только то, что ей нужно в амперах. Однако это не означает, что высококачественный блок питания качественный — пустая трата времени. Высококачественные блоки питания могут обеспечить более чистое и надежное питание системы, а также уменьшить провалы и всплески сетевого тока.
Существует множество других показателей производительности блока питания, но обычно это не технические характеристики. Если вы станете настоящим ярым энтузиастом аппаратного обеспечения, вы также можете сравнить рейтинги различных блоков питания по таким характеристикам, как среднее время безотказной работы, входной диапазон, пиковый пусковой ток, время удержания, переходная характеристика, защита от перенапряжения, максимальное и минимальное значения. ток нагрузки и т. д.
Что происходит, когда вы включаете компьютер?
Когда вы включаете компьютер, блок питания запускается и ждет, пока не прекратятся скачки или просадки при запуске и не стабилизируется выходная мощность. Затем он отправляет +5 В через контакт 8 (на разъеме ATX) или контакт 1 на разъеме P8 (на блоке питания типа AT). Это называется сигналом Power_Good. Материнская плата ищет этот сигнал, и если она обнаруживает, что от +3,0 В до +6,0 В проходит через контакт Power_Good, она знает, что можно включить и начать использовать оставшуюся мощность, поступающую через другие контакты на разъем питания к материнской плате.
Если материнская плата получает питание от других контактов, но на контакт Power_Good не поступает нужное напряжение, она ждет, постоянно перезагружая себя, пока не получит правильное напряжение на Power_Good. Эта система помогает предотвратить электрическое повреждение чувствительных компонентов из-за неисправного источника питания. Первоначальные разработчики ПК думали, что это очень консервативная система, которая обеспечит отсутствие проблем с электропитанием, но позже в этой статье я объясню, что проблемы могут возникнуть в любом случае.
Источники питания в ПК имеют импульсный тип (в отличие от линейных). Из-за этого они не работают без нагрузки, то есть без питания какого-либо устройства. Если вы включите источник питания, который ни к чему не подключен, он либо вообще не будет работать (в лучшем случае), если в него встроена схема защиты, либо сгорит в течение нескольких секунд (в худшем случае), если он работает. нет. Поэтому при тестировании блоков питания у вас всегда должно быть что-то подключено к ним, даже если это старая поломанная материнская плата и морально устаревший накопитель. Сколько нужно для подключения? Это зависит от возраста блока питания. В современных системах большинство материнских плат потребляют необходимое количество тока сами по себе; но в более старых системах или с более мощными блоками питания может потребоваться подключение хотя бы одного диска.
Симптомы неисправного блока питания.
Неисправный блок питания может вызвать всевозможные проблемы, которые, по-видимому, не связаны напрямую, что вынуждает менее опытного специалиста гоняться за дикими гусями по памяти, процессору, материнской плате и ошибки жесткого диска. Часто проблема кажется скачкообразной, например, проблема с памятью, которая каждый раз сообщает о другом адресе памяти как неисправном или спонтанной перезагрузке через случайное время. Блок питания может вызвать проблемы по трем причинам:
- Физический сбой. При отказе блока питания блок питания не вырабатывает номинальную мощность или подает неправильное напряжение на некоторые провода. ПК вообще не запустится, если такое условие существует. (См. следующий раздел, чтобы узнать, правильно ли работает блок питания.) Замена неисправного блока питания — лучшее решение, поскольку ремонт блоков питания может быть опасным для неопытных специалистов и редко бывает рентабельным.
- Перегрузка. При перегрузке блока питания недостаточно мощности для питания всех подключенных к нему устройств. В системе с перегруженным блоком питания часто возникают проблемы при запуске, когда раскручиваются все диски или при доступе к диску. (См. предыдущий раздел, чтобы рассчитать необходимую мощность системы. Затем при необходимости замените блок питания на более мощную модель.)
- Перегрев. Это происходит, когда вентилятор блока питания (или вентилятор охлаждения процессора) не выполняет свою работу должным образом или когда поток воздуха в системном блоке затруднен. Большинство компьютерных корпусов спроектированы таким образом, чтобы свежий воздух проходил через корпус через основные компоненты, выделяющие тепло. Воздух, проходящий через ограниченное пространство, очень важен. Если вы снимите крышку корпуса или не закроете крышки пустых слотов, воздух не будет поступать должным образом, что может привести к перегреву. Если система запускается нормально, но через несколько минут работы начинаются проблемы, почти всегда проблема заключается в неадекватном охлаждении. Убедитесь, что на пути воздушного потока нет препятствий, что радиатор процессора или охлаждающий вентилятор на месте и работают, а вентилятор блока питания работает тихо и правильно.
Проверка блока питания
Для проверки блока питания вам понадобится цифровой мультиметр. Аналоговый тип со стрелочным считыванием может повредить компьютерные схемы. Мультиметр имеет два щупа: красный и черный. Прикоснитесь черным щупом к корпусу компьютера для заземления, а затем используйте красный щуп для проверки.
При тестировании блока питания необходимо проверить его на месте; показания, полученные при отключении от нагрузки, будут неточными. Конечно, вы не можете отсоединять разъемы во время работы компьютера, поэтому для проведения измерений вы должны использовать технику, называемую обратным зондированием. При обратном зондировании вы втыкаете красный щуп в заднюю часть разъема и касаетесь провода внутри пластиковой заглушки.
Из приведенных выше таблиц в этой статье вы знаете, какое напряжение должны испытывать различные провода электропитания. Первый провод для проверки — Power_Good; если оно находится между +3В и +6В, вероятно, блок питания выполняет свою работу.
Замена блока питания
Заменить блок питания довольно просто. Просто открутите четыре винта, которые удерживают его в корпусе, и вытащите его; затем закрепите новый на место. В блоке питания LPX (в стиле AT) выключатель питания прикреплен к блоку питания, поэтому необходимо открепить его от передней части корпуса, чтобы снять старый блок питания, а затем закрепить выключатель нового блока питания на его месте. К блоку питания типа ATX подключаемый блок питания не подключается; вместо этого провод идет от выключателя корпуса к контактам на материнской плате, и когда вы нажимаете кнопку питания, эти контакты замыкаются, сообщая материнской плате о необходимости запуска ПК. В блоке питания ATX питание материнской платы всегда включено, пока компьютер подключен к сети.
Заключение
В этом ежедневном обзоре я попытался раскрыть некоторые тайны источников питания, подробно объяснив, что происходит, и предоставив некоторые начальные сведения для устранения неполадок с питанием. В следующий раз, когда у вас возникнет непонятная проблема с оборудованием, не забудьте проверить блок питания!
Источник питания — это ссылка на источник электроэнергии. Для большинства электронных схем требуется источник питания постоянного тока. Скорее всего, он у вас уже есть дома, и вы можете использовать его для проектов физических вычислений.
Наиболее распространенными рабочими напряжениями для микроконтроллеров и цифровых процессоров являются 5 В и 3,3 В. Вы можете найти блоки питания с разными напряжениями, но наиболее распространены 5 В и 12 В. Чтобы преобразовать 12 В в 5 В или 3,3 В, вам понадобится регулятор напряжения. Лаборатория макетов рассказывает, как это настроить.
Существует множество различных источников питания постоянного тока, но чаще всего в ITP используется блок питания, показанный на рис. 1:
– Нажмите на любое изображение, чтобы увеличить его
Рисунок 1. Блок питания постоянного тока
Рисунок 2. Табличка с характеристиками источника постоянного тока. Это обратная сторона поставки на рис. 1.
Большинство блоков питания имеют табличку с паспортными данными, которая выглядит примерно так, как показано на рис. 2. Убедитесь, что вы знаете полярность вилки, чтобы не перепутать полярность в цепи и не повредить компоненты. Диаграмма на Рисунке 3 и Рисунке 4, показывающая положительную полярность наконечника, находится слева, а отрицательная полярность — справа. Центральный положительный рисунок слева указывает на то, что центр (наконечник) выходного разъема положительный (+), а корпус выходного разъема отрицательный (-).
Рис. 3. Символ источника питания с центральным плюсом.
Рисунок 4. Символ источника питания с отрицательным центром.
Сокращения
В : Вольты
A : Амперы
Вт : Ватты
мА : миллиампер
ВА : Вольты Амперы
VAC : Вольты переменного тока
VDC : Вольты Постоянный ток
Постоянный ток: постоянный ток
Переменный ток: переменный ток
Проверка блока питания
Всегда рекомендуется проверять блок питания перед его первым использованием. В приведенном ниже примере показано, как проверить источник питания с положительной полярностью. Если у вас есть источник питания с отрицательной полярностью, вы получите отрицательное показание. Затем вы должны изменить положение щупов мультиметра.
- Подключите блок питания к розетке переменного тока.
- Красный щуп входит в наконечник.
Черный щуп касается ствола, как показано на рис. 5.
- Включите мультиметр и настройте его на измерение напряжения постоянного тока.
- Возьмите красный (положительный) щуп мультиметра и воткните его в конец вилки блока питания.
- Возьмите черный (отрицательный) щуп мультиметра и осторожно прикоснитесь им к корпусу вилки, не касаясь наконечника или красного щупа. Если вы установите соединение, вы создадите короткое замыкание.
- На мультиметре вы должны увидеть напряжение, поступающее от источника питания. Если вы проверяете источник питания 12 В, а ваш мультиметр показывает «12,56 В», все в порядке, как показано на рисунке 6. Если вы получаете показание «-12,56 В», ваши щупы подключены в обратном порядке. Если это произойдет, и вы уверены, что правильно подключили пробники, еще раз проверьте полярность на этикетке вашего источника питания и убедитесь, что цепь, которую вы будете запитывать от этого устройства, рассчитана на эту полярность.
Если напряжение, показываемое вашим мультиметром, более чем на полвольта или вольта ниже его номинального значения, то, скорее всего, у вас есть то, что называется нерегулируемым источником питания. Блок питания Jameco на 12 В, который мы использовали в этом примере, является регулируемым, поэтому напряжение, которое мы получили, было так близко к напряжению, на которое оно было рассчитано.
Зарядка проекта Arduino от зарядного устройства для мобильного телефона
У многих людей дома есть старые зарядные устройства для мобильных телефонов, и они задаются вопросом: "Могу ли я использовать это для питания проекта Arduino?" Как правило, вы можете. Просто возьмите USB-кабель с соответствующими разъемами для подключения зарядного устройства телефона к Arduino. Большинство зарядных устройств для телефонов выдают 5 В и несколько сотен миллиампер, что обеспечивает питание Arduino, некоторых датчиков и светодиодов.
Подбор блока питания к электронному устройству
Чтобы определить, подходит ли блок питания для вашего проекта, вам необходимо отметить напряжения, при которых работает каждый компонент, и ток, который они потребляют, и убедиться, что ваш блок питания может обеспечить нужное количество энергии.
Вот несколько примеров:
Arduino, кнопки, потенциометры, светодиоды, динамик
Представьте, что вы создаете проект, который включает Arduino, несколько светодиодов, несколько кнопок, несколько потенциометров или других переменных резисторов и, возможно, динамик. Лаборатории Digital In and Out, Analog In и Tone Output описывают проекты, соответствующие этому описанию. Все компоненты, кроме Arduino в этом проекте, питаются от выходного напряжения Arduino. Ни один из внешних компонентов не потребляет больше нескольких миллиампер каждый. Вся схема, включая Arduino, вероятно, будет потреблять менее 200 миллиампер тока. Вот разбивка, измеренная с помощью светодиода и потенциометра:
Зарядное устройство для телефона, которое подает на Arduino 5 вольт и около 500 миллиампер, отлично справится с этой задачей. Arduino Uno работает от 5 В, а Arduino Nano 33 IoT, работающий от 3,3 В, имеет встроенный регулятор напряжения, который преобразует 5 В в 3,3 В.
Если бы у вас был блок питания на 12 В, как показано выше, вы также могли бы использовать его для этих проектов.Arduino Uno имеет соответствующее напряжение в штекере и может потреблять до 15 В. Встроенный регулятор преобразует более высокое входное напряжение в 5 В. Nano 33 IoT имеет встроенный регулятор, который может принимать до 20 В на своем контакте Vin (физический контакт 15), поэтому, если вы подключили разъем питания постоянного тока и соединили землю 12-вольтового источника питания с землей Arduino и положительное соединение 12-вольтового источника питания с выводом Vin Arduino, ваш проект будет работать.
Arduino, серводвигатель
Если вы управляете серводвигателем RD с помощью Arduino, как показано в лаборатории серводвигателей, вам нужно немного больше учитывать ток. Сервопривод, такой как Hitec HS-311, который популярен в проектах физических вычислений, работает при напряжении 4,8–6,0 В, поэтому он может получать достаточное напряжение с выхода напряжения Arduino. В простое потребляет около 160 мА без нагрузки. Однако при большой нагрузке он может потреблять до 3-400 мА. Целесообразно спланировать свой проект для максимального потребления тока каждым компонентом, поэтому один сервопривод и Arduino могут потреблять до 440–450 миллиампер при 5 вольтах. Это почти предел того, что ноутбук может передавать через USB, а также предел некоторых небольших зарядных устройств для телефонов. Если бы вы управляли несколькими сервоприводами, у вас не было бы достаточного тока.
- Arduino Uno, без внешних компонентов: 0,04 А (40 мА)
- Arduino Nano 33 IoT, без внешних компонентов: 0,01 А (10 мА)
- HS-311, большая нагрузка: 400 мА
Arduino, двигатель постоянного тока или освещение
Когда вы начинаете питать большие двигатели постоянного тока, лампы постоянного тока или другие сильноточные нагрузки, вы должны рассчитать напряжение и ток, прежде чем выбирать источник питания. Обычно вы работаете с компонентом, который имеет наибольшее потребление, и работаете с ним.
Например, для управления такой светодиодной лампочкой потребуется источник питания 12 В постоянного тока для лампы. ОН потребляет 11 ватт мощности, а ватты = вольт * ампер, значит потребляет около 917 миллиампер тока при 12 вольтах. Транзистор и Arduino, которые могут управлять им, могут питаться от одного и того же 12-вольтового источника питания и потреблять такое же количество энергии, как и в приведенных выше примерах.
Двигатели и адресные светодиоды часто потребляют больше всего электроэнергии и являются наиболее сложными для питания. Типичный адресный светодиод, такой как WS2812, также известный как NeoPixel LED, потребляет от 60 до 80 мА тока при напряжении 5 вольт. Когда у вас есть цепочка из 60 из них, это 3,6 ампера тока! Они определенно не могут питаться от типичного настенного источника постоянного тока. Когда вы достигнете такого уровня сложности проекта, обратитесь к описаниям компонентов или к своим инструкторам для получения дополнительных рекомендаций. Видеоролики об электричестве, токе и мощности также полезны в этом вопросе.
Подождите! Тот факт, что штекер этого универсального адаптера подходит к вашему ноутбуку или телефону, не означает, что его можно безопасно использовать. Прочтите это руководство, чтобы найти подходящее зарядное устройство или адаптер питания.
В прошлые выходные я сел и разобрал весь свой случайный хлам из электроники. В рамках этого процесса я взял все свои блоки питания и адаптеры и бросил их в коробку. В итоге получилась довольно большая коробка. Готов поспорить, что в любом домашнем хозяйстве есть дюжина или более различных типов зарядных устройств для мобильных телефонов, адаптеров переменного/постоянного тока, блоков питания, кабелей питания и вилок для зарядных устройств.
Наличие такого количества зарядных устройств может сильно раздражать. Их легко отделить от телефона, ноутбука, планшета или роутера. И как только это произойдет, может быть сложно понять, что с чем сочетается. Решение по умолчанию — пробовать случайные разъемы, пока не найдете тот, который подходит для вашего устройства. Однако это большая авантюра. Если вы возьмете несовместимый адаптер питания, в лучшем случае он будет работать, хотя и не так, как задумал производитель. Второй наихудший сценарий заключается в том, что вы поджарите гаджет, который пытаетесь включить. В худшем случае вы сожжете свой дом.
В этой статье я расскажу вам, как порыться в мусорном ящике и найти подходящий адаптер питания для вашего устройства. Затем я объясню, почему это так важно.
- Следующее может повредить ваше устройство:
- Обратная полярность
- Адаптер с более высоким напряжением, чем номинал устройства.
- Обратная полярность
- Ток адаптера меньше, чем номинал устройства.
- Адаптер с более низким напряжением, чем номинальное устройство.
- Ток адаптера выше, чем номинал устройства.
Очень краткое введение в электрическую терминологию
Каждый адаптер питания переменного/постоянного тока специально предназначен для приема определенного входного переменного тока (обычно стандартного выхода от розетки переменного тока 120 В в вашем доме) и преобразования его в определенный выход постоянного тока. Точно так же каждое электронное устройство специально разработано для приема определенного входа постоянного тока. Главное, чтобы выход постоянного тока адаптера соответствовал входу постоянного тока вашего устройства. Определение выходов и входов ваших адаптеров и устройств является сложной задачей.
Адаптеры питания немного похожи на консервы. Некоторые производители помещают на этикетку много информации. Другие помещают только несколько деталей. А если информации на этикетке нет, действуйте с особой осторожностью.
Наиболее важными параметрами для вас и вашей деликатной электроники являются напряжение и сила тока. Напряжение измеряется в вольтах (В), а ток измеряется в амперах (А). (Возможно, вы также слышали о сопротивлении (Ом), но обычно оно не отображается на адаптерах питания.)
Чтобы понять, что означают эти три термина, полезно представить себе электричество как воду, текущую по трубе. В этой аналогии напряжение будет давлением воды. Ток, как следует из самого термина, относится к расходу. А сопротивление зависит от размера трубы. Настройка любой из этих трех переменных увеличивает или уменьшает количество электроэнергии, отправляемой на ваше устройство. Это важно, потому что слишком мало энергии означает, что ваше устройство не будет заряжаться или работать правильно. Слишком большая мощность приводит к избыточному теплу, которое является бичом чувствительной электроники.
Еще один важный термин, который нужно знать, — полярность. Есть положительный полюс (+) и отрицательный полюс (-). Чтобы адаптер работал, положительная вилка должна совпадать с отрицательной розеткой или наоборот. По своей природе постоянный ток — это улица с односторонним движением, и ничего не получится, если вы попытаетесь подняться по водосточной трубе.
Если умножить напряжение на ток, получится мощность. Но количество ватт само по себе не говорит о том, подходит ли адаптер для вашего устройства.
Чтение этикетки адаптера переменного/постоянного тока
Если производитель был достаточно умен (или вынужден по закону) указать выход постоянного тока на этикетке, вам повезло. Посмотрите на «кирпичной» части адаптера слово OUTPUT. Здесь вы увидите вольты, за которыми следует символ постоянного тока, а затем ток.
Символ DC выглядит следующим образом:
Чтобы проверить полярность, найдите знак + или – рядом с напряжением. Или поищите схему, показывающую полярность. Обычно он состоит из трех кругов с плюсом или минусом с каждой стороны и сплошным кружком или буквой C посередине. Если знак + находится справа, то адаптер имеет положительную полярность:
Если справа стоит знак –, то он имеет отрицательную полярность:
Далее вам нужно проверить свое устройство на наличие входа постоянного тока. Обычно вы видите, по крайней мере, напряжение рядом с розеткой постоянного тока. Но вы также хотите убедиться, что текущий тоже совпадает.
Информацию о напряжении и силе тока можно найти в другом месте на устройстве, на дне или внутри крышки батарейного отсека или в руководстве. Опять же, ищите полярность, отмечая символ + или - или диаграмму полярности.
Помните: вход устройства должен быть таким же, как выход адаптера. Это включает в себя полярность. Если устройство имеет вход постоянного тока +12 В / 5,4 А, приобретите адаптер с выходом постоянного тока +12 В / 5,4 А. Если у вас есть универсальный адаптер, убедитесь, что он имеет надлежащий номинальный ток, и выберите правильное напряжение и полярность.
Обман: что произойдет, если вы используете неправильный адаптер?
В идеале на адаптере и устройстве должны быть одинаковые напряжение, сила тока и полярность.
Но что, если вы случайно (или намеренно) используете не тот адаптер? В некоторых случаях вилка не подходит. Но во многих случаях к вашему устройству подключается несовместимый адаптер питания. Вот что вы можете ожидать в каждом сценарии:
- Неправильная полярность. Если изменить полярность, может произойти несколько вещей. Если вам повезет, ничего не произойдет, и никакого ущерба не произойдет. Если вам не повезет, ваше устройство будет повреждено. Есть и золотая середина. Некоторые ноутбуки и другие устройства имеют защиту от полярности, которая по сути представляет собой предохранитель, который перегорает, если вы используете неправильную полярность. Если это произойдет, вы можете услышать хлопок и увидеть дым. Но устройство может по-прежнему работать от батареи. Однако ваш вход постоянного тока будет поджаренным. Чтобы исправить это, либо замените предохранитель защиты от неправильной полярности, либо отдайте его в ремонт. Хорошая новость заключается в том, что основная схема не сгорела.
- Слишком низкое напряжение. Если напряжение на адаптере ниже, чем на устройстве, но ток такой же, устройство может работать, хотя и с перебоями. Если мы вернемся к нашей аналогии напряжения с давлением воды, это будет означать, что у устройства «низкое кровяное давление». Эффект низкого напряжения зависит от сложности устройства. Динамик, например, может быть в порядке, но он не будет таким громким. Более сложные устройства будут давать сбои и могут даже отключиться при обнаружении пониженного напряжения. Обычно пониженное напряжение не приводит к повреждению или сокращению срока службы вашего устройства.
- Напряжение слишком высокое. Если адаптер имеет более высокое напряжение, но ток такой же, то устройство, скорее всего, выключится, когда обнаружит перенапряжение. В противном случае он может нагреваться сильнее, чем обычно, что может сократить срок службы устройства или привести к немедленному повреждению.
- Слишком высокий ток. Если адаптер имеет правильное напряжение, но ток больше, чем требует вход устройства, вы не должны увидеть никаких проблем. Например, если у вас есть ноутбук, который требует входа постоянного тока 19 В / 5 А, но вы используете адаптер постоянного тока 19 В / 8 А, ваш ноутбук по-прежнему будет получать требуемое напряжение 19 В, но он будет потреблять только 5 А тока. Что касается тока, то здесь все решает устройство, и адаптеру придется выполнять меньше работы.
- Слишком низкий ток. Если адаптер имеет правильное напряжение, но номинальный ток адаптера ниже, чем на входе устройства, может произойти несколько вещей. Устройство может включиться и потреблять от адаптера больше тока, чем предусмотрено. Это может привести к перегреву или выходу адаптера из строя. Или устройство может включиться, но адаптер может не поддерживать его, что приведет к падению напряжения (см. раздел Слишком низкое напряжение выше). Для ноутбуков, работающих от адаптеров пониженного тока, вы можете видеть заряд аккумулятора, но ноутбук не включается, или он может работать от источника питания, но аккумулятор не заряжается. Итог: не рекомендуется использовать адаптер с более низким номинальным током, так как это может привести к избыточному нагреву.
Вы ожидаете увидеть все вышеперечисленное на основе простого понимания полярности, напряжения и силы тока. Что эти прогнозы не учитывают, так это различные средства защиты и универсальность адаптеров и устройств. Производители также могут встроить в свои рейтинги некоторую подушку безопасности. Например, ваш ноутбук может потреблять 8 А, но на самом деле он потребляет всего около 5 А. И наоборот, адаптер может быть рассчитан на 5А, но может выдерживать ток до 8А. Кроме того, некоторые адаптеры и устройства будут иметь функции переключения или обнаружения напряжения и тока, которые будут регулировать выходную мощность в зависимости от того, что необходимо. И, как упоминалось выше, многие устройства автоматически отключаются до того, как это нанесет ущерб.
При этом я не рекомендую подтасовывать маржу, предполагая, что вы можете превысить скорость на 5 миль в час с помощью своих электронных устройств. Запас существует не просто так, и чем сложнее устройство, тем выше вероятность того, что что-то пойдет не так.
Есть ли предостережения об использовании неподходящего адаптера переменного/постоянного тока? Предупредите нас в комментариях!
Просто общий вопрос по электронике: что такое отрицательное напряжение, например -5 вольт?
Насколько мне известно, электроэнергия генерируется электронами, блуждающими от отрицательной к положительной стороне источника питания (здесь предполагается мощность постоянного тока). Является ли отрицательное напряжение, когда электроны блуждают от + к -?
Зачем он вообще нужен некоторым устройствам, что в нем такого особенного?
\$\begingroup\$ Лучше думать об электронике как о прикладной математике и полностью забыть об электронах. \$\конечная группа\$
\$\begingroup\$ Блуждают ли электроны или дырки, в которые они хотят попасть? Может быть вопрос для сайта Electrical Philosophy SE? \$\конечная группа\$
\$\begingroup\$ Размышления @endolith об электронах — это именно то, на чем я сейчас застрял, пытаясь думать о том, как специфицируются высоковольтные источники питания для электронно-лучевых пушек. Если обычный ток + означает «богатую электронами» сторону цепи, то для питания электронно-лучевой пушки мне понадобится источник питания на несколько киловольт +? Но для ионной пушки (то есть галлия) мне нужен галлий, подключенный к источнику питания (хотя мы знаем, что ионы Ga имеют положительный заряд)? Кроме того, откуда мне узнать, что указано производителем таких источников питания, обычным током или зарядом частиц (эти источники обычно продаются для этой цели) \$\endgroup\$
10 ответов 10
Кто-то может объяснить это лучше, чем я, но важно помнить, что напряжение — это разность потенциалов. В большинстве случаев «разностная» часть представляет собой разницу между некоторым потенциалом и потенциалом земли. Когда кто-то говорит -5v, он имеет в виду, что вы находитесь под землей.
Вы также должны помнить, что напряжение является относительным. Итак, как я упоминал ранее, большинство людей ссылаются на «землю»; но что такое земля?Вы можете сказать, что земля — это земля, но как насчет случая, когда у вас есть устройство с батарейным питанием, которое не имеет контакта с землей. В этой ситуации мы должны рассматривать некоторую произвольную точку как «землю». Обычно в этом справочнике рассматривается отрицательная клемма аккумулятора.
Теперь рассмотрим случай, когда у вас последовательно соединены 2 батареи. Если бы оба были 5 вольт, то вы бы сказали, что у вас всего 10 вольт.
Но предположение, что вы получаете 0/+10, основано на "земле" как на отрицательной клемме батареи, которая не касается другой батареи, а затем на 10 В, как на расположении положительной клеммы, которая не соприкасается с другой батареей. t касаясь другой батареи. В этой ситуации мы можем принять решение, что мы хотим сделать соединение между двумя батареями нашей «землей». Это приведет к +5 В на одном конце и -5 В на другом конце.
Читайте также: