Как называется часть процессора, которая выполняет инструкции?

Обновлено: 02.07.2024

Компьютер представляет собой сложную систему, состоящую из множества различных компонентов. Но в сердце — или, если хотите, в мозгу — компьютера находится единственный компонент, который выполняет фактические вычисления. Это центральный процессор или центральный процессор. В современном настольном компьютере ЦП представляет собой один «чип» размером порядка одного квадратного дюйма. Работа процессора заключается в выполнении программ.

Программа – это просто список недвусмысленных инструкций, которым компьютер должен следовать автоматически. Компьютер создан для выполнения инструкций, написанных на очень простом языке, называемом машинным языком. Каждый тип компьютера имеет свой собственный машинный язык, и компьютер может напрямую выполнять программу только в том случае, если программа написана на этом языке. (Он может выполнять программы, написанные на других языках, если они сначала переведены на машинный язык.)

Когда ЦП выполняет программу, эта программа сохраняется в основной памяти компьютера (также называемой ОЗУ или оперативной памятью). В дополнение к программе в памяти также могут храниться данные, которые используются или обрабатываются программой. Основная память состоит из последовательности ячеек. Эти местоположения пронумерованы, а порядковый номер местоположения называется его адресом. Адрес обеспечивает способ выбора одной конкретной части информации из миллионов, хранящихся в памяти. Когда ЦП необходимо получить доступ к программной инструкции или данным в определенном месте, он отправляет адрес этой информации в качестве сигнала в память; память отвечает, отправляя обратно значение, содержащееся в указанном месте. ЦП также может хранить информацию в памяти, указав информацию, которая должна быть сохранена, и адрес места, где она должна быть сохранена.

На уровне машинного языка работа ЦП довольно проста (хотя и очень сложна в деталях). ЦП выполняет программу, которая хранится в основной памяти в виде последовательности инструкций машинного языка. Он делает это, многократно считывая или извлекая инструкцию из памяти, а затем выполняя или выполняя эту инструкцию. Этот процесс — выборка инструкции, ее выполнение, выборка другой инструкции, ее выполнение и так далее до бесконечности — называется циклом выборки-и-выполнения. За одним исключением, которое будет рассмотрено в следующем разделе, это все, что когда-либо делал ЦП. (На самом деле все это несколько сложнее в современных компьютерах. Типичный процессорный чип в наши дни содержит несколько «ядер» ЦП, что позволяет ему выполнять несколько инструкций одновременно. А доступ к основной памяти ускоряется за счет «кэшей» памяти, которые могут доступ к ним осуществляется быстрее, чем к основной памяти, и они предназначены для хранения данных и инструкций, которые, вероятно, скоро потребуются ЦП. Однако эти сложности не меняют основной операции.)

ЦП содержит арифметико-логическое устройство или АЛУ, которое является частью процессора и выполняет такие операции, как сложение и вычитание. Он также содержит небольшое количество регистров, которые представляют собой небольшие блоки памяти, способные хранить одно число. Типичный ЦП может иметь 16 или 32 регистра «общего назначения», в которых хранятся значения данных, которые сразу доступны для обработки, и многие инструкции машинного языка ссылаются на эти регистры. Например, может быть инструкция, которая берет два числа из двух указанных регистров, складывает эти числа (используя АЛУ) и сохраняет результат обратно в регистр. И могут быть инструкции для копирования значения данных из основной памяти в регистр или из регистра в основную память.

ЦП также включает регистры специального назначения. Наиболее важным из них является счетчик программ, или ПК. ЦП использует ПК, чтобы отслеживать, где он находится в программе, которую он выполняет. ПК просто сохраняет адрес памяти следующей инструкции, которую должен выполнить ЦП. В начале каждого цикла выборки и выполнения ЦП проверяет ПК, чтобы узнать, какую инструкцию он должен получить. В ходе цикла выборки и выполнения число в ПК обновляется, чтобы указать инструкцию, которая должна быть выполнена в следующем цикле. Обычно, но не всегда, это просто инструкция, которая последовательно следует за текущей инструкцией в программе. Некоторые инструкции машинного языка изменяют значение, хранящееся в ПК. Это позволяет компьютеру «прыгать» с одной точки программы на другую, что необходимо для реализации функций программы, известных как циклы и переходы, которые обсуждаются в разделе 1.4.

Компьютер выполняет программы на машинном языке механически, то есть не понимая их и не думая о них, просто из-за того, как он физически устроен. Это не простая концепция.Компьютер представляет собой машину, состоящую из миллионов крошечных переключателей, называемых транзисторами, которые обладают тем свойством, что их можно соединять вместе таким образом, что выходной сигнал одного переключателя может включать или выключать другой переключатель. Когда компьютер выполняет вычисления, эти переключатели включают или выключают друг друга по шаблону, определяемому как способом их соединения, так и программой, которую выполняет компьютер.

Инструкции машинного языка выражаются в виде двоичных чисел. Двоичное число состоит всего из двух возможных цифр, нуля и единицы. Каждый ноль или единица называется битом. Итак, инструкция машинного языка — это просто последовательность нулей и единиц. Каждая конкретная последовательность кодирует определенную инструкцию. Данные, которыми манипулирует компьютер, также кодируются в виде двоичных чисел. В современных компьютерах каждая ячейка памяти содержит байт, представляющий собой последовательность из восьми битов. Инструкция машинного языка или часть данных обычно состоит из нескольких байтов, хранящихся в последовательных ячейках памяти. Например, когда ЦП читает инструкцию из памяти, он может фактически прочитать четыре или восемь байтов из четырех или восьми ячеек памяти; адрес памяти инструкции — это адрес первого из этих байтов.

Компьютер может работать напрямую с двоичными числами, поскольку переключатели могут легко представлять такие числа: включите переключатель, чтобы представить единицу; выключите его, чтобы представить ноль. Инструкции на машинном языке хранятся в памяти в виде комбинаций включенных и выключенных переключателей. Когда инструкция машинного языка загружается в ЦП, все, что происходит, это то, что определенные переключатели включаются или выключаются в шаблоне, кодирующем эту инструкцию. ЦП устроен так, чтобы реагировать на этот шаблон, выполняя закодированную им инструкцию; он делает это просто из-за того, что все остальные переключатели в ЦП соединены вместе.

Итак, вы должны понимать, как работают компьютеры: основная память содержит программы и данные на машинном языке. Они кодируются как двоичные числа. ЦП извлекает инструкции машинного языка из памяти одну за другой и выполняет их. Каждая инструкция заставляет ЦП выполнять какую-то очень небольшую задачу, например сложение двух чисел или перемещение данных в память или из памяти. Процессор делает все это механически, не задумываясь и не понимая, что он делает, и поэтому исполняемая им программа должна быть совершенной, завершенной во всех деталях и однозначной, потому что процессор не может ничего сделать, кроме как выполнить ее точно так, как она написана. Вот схематическое изображение этого первого этапа понимания компьютера:


Небольшое количество регистров общего назначения:
Инструкции, которые работают непосредственно с памятью, и только ограниченное количество места в микросхеме выделено для регистров общего назначения.

Несколько регистров специального назначения:
Многие конструкции CISC выделяют специальные регистры для указателя стека, обработки прерываний и т. д. Это может несколько упростить конструкцию оборудования за счет усложнения набора инструкций.

Конвейерная обработка: метод, позволяющий одновременно выполнять части или этапы инструкций для более эффективной обработки инструкций.

Несколько типов данных
Поддерживает простые типы данных, такие как целые числа/символы, для сложных структур данных, таких как записи

Простые режимы адресации
Используйте простые режимы адресации и инструкции фиксированной длины для упрощения конвейерной обработки. Косвенная адресация памяти не предусмотрена.

Идентичные регистры общего назначения
Разрешить использование любого регистра в любом контексте

Простое оборудование. Поскольку набор инструкций RISC-процессора настолько прост, он занимает гораздо меньше места на кристалле. Чипы меньшего размера позволяют производителям полупроводников размещать больше деталей на одной кремниевой пластине, что может значительно снизить стоимость чипа.

Сокращенный цикл проектирования. Поскольку процессоры RISC проще, чем соответствующие процессоры CISC, их можно разрабатывать быстрее, и они могут использовать преимущества других технологических разработок раньше, чем соответствующие процессоры CISC, что приводит к большему скачку производительности между поколениями.

Эффективный код. Компиляторы языков более высокого уровня производят более эффективный код, чем раньше, потому что они всегда имели тенденцию использовать меньший набор инструкций, который можно найти в компьютере RISC.

Расширение кода. CISC-машины выполняют сложные действия с помощью одной инструкции; Компьютерам RISC может потребоваться несколько инструкций для одного и того же действия, расширение кода может быть проблемой.

Расширение кода означает увеличение размера, которое вы получаете, когда берете программу, скомпилированную для компьютера CISC, и перекомпилируете ее для компьютера RISC. Точное расширение зависит прежде всего от качества компилятора и характера набора инструкций машины.

В современных системах используются вентиляторы и радиаторы.Радиатор выглядит как металлические стержни или ребра, выступающие из процессора. (пассивные) радиаторы используют теплопроводность для отвода тепла от процессора через ребра.

В комплект обычно входит водоблок ЦП, помпа, радиатор/вентилятор, трубки из ПВХ и, конечно же, охлаждающая жидкость.

Дополнительный вентилятор на передней панели корпуса можно использовать для забора холодного воздуха. Если вы не уверены, в какую сторону дует вентилятор, подключите его кабель питания к компьютеру, но не монтируйте его; затем поднесите лист бумаги к вентилятору. Сторона, которая тянет бумагу к себе, должна быть стороной, обращенной к передней части компьютера, когда он установлен.

<р>2. Предотвращение электростатического разряда: Наденьте антистатический браслет на запястье, прикрепите другой конец к заземленной или неокрашенной металлической части компьютера. Извлеките ЦП и радиатор из упаковки и поместите их в антистатический пакет.
*Убедитесь, что контакты (или контакты) ЦП обращены вверх, чтобы избежать повреждений.

<р>3. Снимите старый процессор, подняв фиксирующий рычаг ZIF-сокета; аккуратно удалите.

<р>4. Уберите все кабели или другое оборудование, которое может помешать или повредить процессор, радиатор или вентилятор. Вставьте новый процессор в сокет. При установке процессора он вставляется в сокет только одним концом. Прежде чем вставлять чип, посмотрите на процессор и сокет, чтобы убедиться в правильности их совмещения. Сокет и ЦП обычно имеют треугольную маркировку или круглую точку, которая показывает, куда идет контакт 1. Процессоры вставляются в сокет только одним концом. Если сокет имеет удерживающий рычаг, поднятие рычага сокета позволяет вставить ЦП. Опускание рычага удерживает ЦП в сокете. Некоторые материнские платы имеют фиксирующий механизм, используемый с процессорами, оснащенными установленными радиаторами.

5.Проверьте установку. Не закрывая корпус, загрузите компьютер, чтобы убедиться, что BIOS POST распознает ЦП с правильным типом и скоростью. При необходимости остановите POST, чтобы прочитать подробности, а когда закончите, войдите в BIOS и просмотрите там информацию о ЦП. Если BIOS не распознает ЦП должным образом, проверьте, не требуется ли обновление BIOS для материнской платы. Также убедитесь, что вентилятор процессора работает. Затем просмотрите сведения о процессоре в BIOS. Убедитесь, что напряжение, сообщаемое BIOS, находится в допустимых пределах. Затем войдите в операционную систему (после ее установки) и убедитесь, что она правильно загружается. Выполните несколько полных циклов и прогрейте обувь. Наконец, просмотрите ЦП в Windows и с помощью CPU-Z:

Введение в процессор

Наследие более ранних разработок, таких как разностная машина Бэббиджа и перфокартные системы мейнфреймов 1970-х годов, оказывают значительное влияние на современные компьютерные системы. В своей первой статье из этой исторической серии «История компьютеров и современные компьютеры для системных администраторов» я обсудил несколько предшественников современного компьютера и перечислил характеристики, определяющие то, что мы сегодня называем компьютером.

В этой статье я расскажу о центральном процессоре (ЦП), включая его компоненты и функциональные возможности. Многие темы относятся к первой статье, поэтому обязательно прочитайте ее, если вы еще этого не сделали.

Центральный процессор (ЦП)

ЦП современных компьютеров — это воплощение «мельницы» в разностной машине Бэббиджа. Термин центральный процессор возник еще в далекие компьютерные времена, когда в одном массивном корпусе содержалась схема, необходимая для интерпретации программных инструкций машинного уровня и выполнения операций с предоставленными данными. Центральный процессор также завершил всю обработку всех подключенных периферийных устройств. Периферийные устройства включали принтеры, устройства чтения карт и ранние устройства хранения, такие как барабаны и дисководы. Современные периферийные устройства сами обладают значительной вычислительной мощностью и разгружают некоторые задачи обработки с ЦП. Это освобождает ЦП от задач ввода-вывода, так что его мощность применяется к основной задаче под рукой.

Ранние компьютеры имели только один ЦП и могли выполнять только одну задачу за раз.

Сегодня мы сохраняем термин ЦП, но теперь он относится к процессорному пакету на типичной материнской плате. На рис. 1 показан стандартный пакет процессоров Intel.

Пакет процессора Intel Core i5

Рис. 1. Процессор Intel Core i5 (Джуд МакКрени, Wikimedia Commons, CC BY-SA 4.0).

Здесь действительно не на что смотреть, кроме самого пакета процессора. Пакет процессора представляет собой микросхему, содержащую процессор(ы), запечатанную внутри металлического контейнера и установленную на небольшой печатной плате (ПК).Пакет просто вставляется в гнездо ЦП на материнской плате и фиксируется с помощью фиксирующего рычага. Процессорный кулер крепится к корпусу процессора. Существует несколько различных физических разъемов с определенным количеством контактов, поэтому, если вы собираете свои собственные компьютеры, очень важно подобрать правильный корпус, подходящий для разъема материнской платы.

Как работает процессор

Давайте рассмотрим ЦП более подробно. На рис. 2 представлена ​​концептуальная схема гипотетического ЦП, позволяющая упростить визуализацию компонентов. ОЗУ и системные часы заштрихованы, поскольку они не являются частью ЦП и показаны только для ясности. Кроме того, никакие связи между тактовым генератором ЦП и блоком управления и компонентами ЦП не используются. Достаточно сказать, что сигналы от тактового генератора и блока управления являются неотъемлемой частью любого другого компонента.

Упрощенная концептуальная схема типичного процессора

Рисунок 2. Упрощенная концептуальная схема типичного процессора.

Этот дизайн не выглядит особенно простым, но на самом деле все еще сложнее. Этой цифры достаточно для наших целей, но она не слишком сложная.

Арифметико-логическое устройство

Арифметико-логическое устройство (АЛУ) выполняет арифметические и логические функции, за которые отвечает компьютер. A и B регистры содержат входные данные, а накопитель получает результат операции. Регистр инструкций содержит инструкцию, которую должен выполнить АЛУ.

Например, при добавлении двух чисел одно число помещается в регистр A, а другое — в регистр B. АЛУ выполняет сложение и помещает результат в аккумулятор. Если операция логическая, сравниваемые данные помещаются в регистры ввода. Результат сравнения, 1 или 0, помещается в аккумулятор. Независимо от того, является ли это логической или арифметической операцией, содержимое накопителя затем помещается в ячейку кэша, зарезервированную программой для результата.

Существует еще один тип операций, выполняемых ALU. Результатом является адрес в памяти, который используется для вычисления нового местоположения в памяти, чтобы начать загрузку инструкций. Результат помещается в регистр указателя команд.

Регистр инструкций и указатель

Указатель инструкции указывает место в памяти, содержащее следующую инструкцию, которую должен выполнить ЦП. Когда ЦП завершает выполнение текущей инструкции, следующая инструкция загружается в регистр инструкций из ячейки памяти, на которую указывает указатель инструкции.

После загрузки инструкции в регистр инструкций указатель регистра инструкций увеличивается на один адрес инструкции. Увеличение позволяет ему быть готовым к перемещению следующей инструкции в регистр инструкций.

Кэш

ЦП никогда не обращается напрямую к ОЗУ. Современные процессоры имеют один или несколько уровней кеша. Способность ЦП выполнять вычисления намного быстрее, чем способность ОЗУ передавать данные ЦП. Причины этого выходят за рамки этой статьи, но я расскажу об этом подробнее в следующей статье.

Кэш-память быстрее системной ОЗУ и ближе к ЦП, поскольку находится на кристалле процессора. Кэш обеспечивает хранение данных и инструкции, чтобы ЦП не ждал, пока данные будут извлечены из ОЗУ. Когда центральному процессору нужны данные (а инструкции программы также считаются данными), кэш определяет, имеются ли уже данные, и предоставляет их центральному процессору.

Если запрошенных данных нет в кеше, они извлекаются из ОЗУ и с помощью алгоритмов прогнозирования перемещают больше данных из ОЗУ в кеш. Контроллер кэша анализирует запрошенные данные и пытается предсказать, какие дополнительные данные потребуются из оперативной памяти. Он загружает ожидаемые данные в кеш. Храня некоторые данные ближе к ЦП в кеше, который быстрее, чем ОЗУ, ЦП может оставаться занятым и не тратить циклы на ожидание данных.

Наш простой ЦП имеет три уровня кэша. Уровни 2 и 3 предназначены для прогнозирования того, какие данные и программные инструкции потребуются в следующий раз, для перемещения этих данных из ОЗУ и перемещения их как можно ближе к ЦП, чтобы они были готовы, когда это необходимо. Эти размеры кэша обычно варьируются от 1 МБ до 32 МБ в зависимости от скорости и предполагаемого использования процессора.

Кэш уровня 1 расположен ближе всего к центральному процессору. В нашем процессоре есть два типа кеша L1. L1i — это кэш инструкций, а L1d — кэш данных. Размер кэша уровня 1 обычно составляет от 64 КБ до 512 КБ.

Блок управления памятью

Блок управления памятью (MMU) управляет потоком данных между основной памятью (ОЗУ) и ЦП.Он также обеспечивает защиту памяти, необходимую в многозадачных средах, и преобразование адресов виртуальной памяти в физические адреса.

Часы процессора и блок управления

Все компоненты ЦП должны быть синхронизированы для бесперебойной совместной работы. блок управления выполняет эту функцию со скоростью, определяемой тактовой частотой, и отвечает за управление операциями других блоков с помощью сигналов синхронизации, которые распространяются на ЦП.< /p>

Оперативная память (ОЗУ)

Хотя ОЗУ или основное хранилище показаны на этой и следующей диаграммах, на самом деле они не являются частью ЦП. Его функция заключается в хранении программ и данных, чтобы они были готовы к использованию, когда они потребуются процессору.

Как это работает

ЦП работают по циклу, который управляется блоком управления и синхронизируется с часами ЦП. Этот цикл называется циклом инструкций ЦП и состоит из ряда компонентов выборки/декодирования/выполнения. Инструкция, которая может содержать статические данные или указатели на переменные данные, извлекается и помещается в регистр инструкций. Команда декодируется, и любые данные помещаются в регистры данных A и B. Инструкция выполняется с использованием регистров A и B, а результат помещается в аккумулятор. Затем ЦП увеличивает значение указателя инструкции на длину предыдущего и начинает заново.

Базовый цикл инструкций ЦП выглядит следующим образом.

Основной цикл инструкций процессора

Рисунок 3. Базовый цикл инструкций ЦП.

Потребность в скорости

Хотя базовый ЦП работает хорошо, ЦП, работающие в этом простом цикле, можно использовать еще эффективнее. Существует несколько стратегий повышения производительности ЦП, и здесь мы рассмотрим две из них.

Ускорение цикла инструкций

Одной из проблем, с которой столкнулись первые разработчики ЦП, была трата времени на различные компоненты ЦП. Одной из первых стратегий повышения производительности ЦП было перекрытие частей цикла инструкций ЦП для более полного использования различных частей ЦП.

Например, когда текущая инструкция декодирована, следующая извлекается и помещается в регистр инструкций. Как только это произошло, указатель инструкции обновляется адресом памяти следующей инструкции. Использование перекрывающихся циклов команд показано на рисунке 4.

Цикл инструкций процессора с перекрытием

Рисунок 4. Цикл инструкций ЦП с перекрытием.

Этот дизайн выглядит красиво и плавно, но такие факторы, как ожидание ввода-вывода, могут нарушить поток. Отсутствие правильных данных или инструкций в кэше требует, чтобы MMU находил правильные данные и перемещал их в ЦП, а это может занять некоторое время. Для выполнения некоторых инструкций также требуется больше циклов ЦП, чем для других, что мешает плавному перекрытию.

Тем не менее, это мощная стратегия повышения производительности ЦП.

Гиперпоточность

Еще одна стратегия повышения производительности ЦП — гиперпоточность. Гиперпоточность заставляет одно ядро ​​процессора работать как два процессора, предоставляя два потока данных и инструкций. Добавление второго указателя инструкций и регистра инструкций к нашему гипотетическому ЦП, как показано на рис. 5, заставляет его функционировать как два ЦП, выполняя два отдельных потока инструкций в течение каждого командного цикла. Кроме того, когда один поток выполнения останавливается в ожидании данных (опять же, инструкции также являются данными), второй поток выполнения продолжает обработку. Каждое ядро, реализующее гиперпоточность, эквивалентно двум ЦП по способности обрабатывать инструкции.

Концептуальная схема процессора с гиперпоточностью

Рис. 5. Концептуальная схема ЦП с технологией Hyper-Threading.

Помните, что это очень упрощенная схема и объяснение нашего гипотетического процессора. Реальность гораздо сложнее.

Дополнительная терминология

Я столкнулся с множеством различных терминов ЦП. Чтобы более точно определить терминологию, давайте рассмотрим сам ЦП с помощью команды lscpu.

Процессор Intel, показанный выше, представляет собой корпус, который подключается к одному разъему на материнской плате. Пакет процессора содержит шесть ядер. Каждое ядро ​​поддерживает гиперпоточность, поэтому каждое из них может одновременно запускать два потока, что в сумме дает 12 ЦП.

  • Ядро. Ядро — это наименьшая единица физического оборудования, способная выполнять задачу обработки. Он содержит одно АЛУ и один или два набора вспомогательных регистров. Второй набор регистров и поддерживающих схем обеспечивает гиперпоточность. Одно или несколько ядер можно объединить в один физический пакет.
  • ЦП. Логический аппаратный блок, способный обрабатывать один поток выполнения. Современное использование термина центральный процессор относится к общему количеству потоков, которые процессорный пакет может выполнять одновременно. Одноядерный процессор, не поддерживающий гиперпоточность, эквивалентен одному процессору. В этом случае ЦП и ядро ​​являются синонимами. Процессор Hyper-Threading с одним ядром является функциональным эквивалентом двух процессоров. Процессор с поддержкой технологии Hyper-Threading с восемью ядрами функционально эквивалентен 16 процессорам.
  • Пакет – физический компонент, содержащий одно или несколько ядер, как показано на рис. 1 выше.
  • Процессор. 1) Устройство, которое обрабатывает инструкции программы для обработки данных. 2) Часто используется как синоним пакета.
  • Сокет. Иногда используется как синоним пакета, но более точно относится к физическому сокету на материнской плате, в который вставляется корпус процессора.

Термины сокет, процессор и пакет часто используются взаимозаменяемо, что может вызвать некоторую путаницу. Как видно из приведенных выше результатов команды lscpu, Intel предоставляет нам собственную терминологию, и я считаю ее авторитетным источником. На самом деле мы все используем эти термины по-разному, но если мы понимаем друг друга в любой момент времени, это действительно важно.

Обратите внимание, что указанный выше процессор имеет два кэша уровня 1 по 512 КиБ каждый: один для инструкций (L1i) и один для данных (L1d). Кэш уровня 1 находится ближе всего к ЦП, и он ускоряет работу, разделяя инструкции и данные на этом этапе. Кэши уровня 2 и уровня 3 больше, но инструкции и данные сосуществуют в каждом из них.

Что все это значит?

Хороший вопрос. На заре мейнфреймов каждый компьютер имел только один ЦП и не мог одновременно запускать более одной программы. Мейнфрейм может выполнять расчет заработной платы, затем учет запасов, затем выставление счетов клиентам и т. д., но одновременно может выполняться только одно приложение. Каждая программа должна была завершиться, прежде чем системный оператор мог запустить следующую.

В некоторых ранних попытках одновременного запуска нескольких программ применялся простой подход, направленный на более эффективное использование одного процессора. Например, программа1 и программа2 были загружены, а программа1 выполнялась до тех пор, пока не была заблокирована в ожидании ввода-вывода. В этот момент программа2 работала до тех пор, пока не была заблокирована. Такой подход назывался многопроцессорной обработкой и позволял полностью использовать ценное компьютерное время.

Все ранние попытки многозадачности включали очень быстрое переключение контекста выполнения одного ЦП между потоками выполнения нескольких задач. Эта практика не является настоящей многозадачностью, как мы ее понимаем, потому что в действительности одновременно обрабатывается только один поток выполнения. Правильнее будет назвать это разделением времени.

Все современные компьютеры, от смарт-часов и планшетов до суперкомпьютеров, поддерживают настоящую многозадачность с несколькими процессорами. Наличие нескольких процессоров позволяет компьютерам выполнять множество задач одновременно. Каждый ЦП выполняет свои функции одновременно со всеми остальными ЦП. Восьмиъядерный процессор с технологией Hyper-Threading (т. е. 16 ЦП) может одновременно выполнять 16 задач.

Заключительные мысли

Мы рассмотрели концептуальный и упрощенный ЦП, чтобы немного узнать о структурах. В этой статье я лишь поверхностно коснулся функциональности процессора. Вы можете узнать больше, воспользовавшись встроенными ссылками на изученные нами темы.

Помните, что схемы и описания в этой статье носят чисто концептуальный характер и не представляют реальный ЦП.

В следующей части этой серии статей я рассмотрю оперативную память и дисковые накопители как разные типы хранилищ и поясню, почему каждый из них необходим современным компьютерам.

Читайте также: