Частота графического процессора видеокарты на что влияет

Обновлено: 24.11.2024

В современных ПК и ноутбуках видеокарты являются важным компонентом, поскольку большинству приложений требуется определенный уровень обработки графики.

На настольных ПК у нас есть возможность установить дискретную видеокарту в слоты PCI. Эти видеокарты можно заменить и обновить в будущем.

Для игровых ПК видеокарты абсолютно необходимы, так как они требуются для большинства современных 3D-игр. Для других приложений, основанных на 3D-графике, таких как моделирование, анимация и т. д., также требуется видеокарта.

Помимо конкретных приложений, даже стандартные приложения и операционные системы, такие как Windows и Linux, требуют некоторого уровня графических возможностей для оптимальной производительности.

Графические карты имеют множество технических характеристик, определяющих их производительность. Если вы планируете купить видеокарту, обязательно оцените ключевые характеристики, такие как требования к графическому процессору, памяти и мощности.

Несмотря на то, что более дорогие видеокарты мощнее более дешевых, они не всегда могут иметь лучшее соотношение цены и производительности.

Поэтому, даже если у вас большой бюджет, важно убедиться, что вычислительная мощность видеокарты действительно стоит потраченных денег.

В этой статье мы поговорим об основных функциях и характеристиках видеокарт, которые необходимо знать при покупке.

  • Графический процессор: AMD, Nvidia
  • Количество ядер
  • Тактовая частота ядра
  • Тип памяти
  • Размер памяти
  • Пропускная способность памяти
  • Интерфейс материнской платы
  • Расчетная тепловая мощность
  • Разъемы питания
  • Порты видеовыхода — HDMI, DisplayPort
  • Поддержка API — DirectX, Vulkan
  • Производительность вычислений – TFLOPS

1. Графический процессор

Графические процессоры производятся только двумя брендами, а именно Nvidia и AMD. Затем их графические процессоры используются сторонними производителями для производства видеокарт. Оба бренда предлагают действительно большую коллекцию графических процессоров в различных ценовых категориях и наборах функций. Графический процессор часто называют графическим сопроцессором или графическим чипсетом, что означает одно и то же.

Для любого случая использования — от простых игр до игр с высокой частотой кадров и 3D-моделирования — есть видеокарта. В графических процессорах есть много похожих технологий, реализованных под другим кодовым названием. Например, Nvidia использует термин «ядра CUDA», тогда как AMD называет их «потоковыми процессорами». Точно так же nvidia использует термин SLI для установки с несколькими графическими процессорами, тогда как AMD использует название Crossfire для своего решения с несколькими графическими процессорами.

Выделенные графические карты доступны в виде дискретных карт PCI для настольных ПК и полностью предустановленных внутри ноутбуков. На настольных ПК вы можете заменить видеокарту на более новую, тогда как на ноутбуках это может быть невозможно.

Некоторые из самых популярных графических процессоров включают

  • Radeon RX 5600XT
  • Радеон RX 550
  • Radeon RX 580 GTS
  • Радеон RX 570
  • Radeon RX 6800XT
  • Geforce GTX 1050 Ti
  • Geforce GTX 1650
  • Geforce GTX 1660 Ti
  • RTX 2080
  • RTX 3080
  • RTX 3090

В целом более дорогие графические процессоры обладают большей производительностью и предоставляют больше возможностей и функций для обработки графики.

2. Потоковые процессоры/ядра CUDA

Эти термины относятся к одному и тому же. Stream Processor — это номенклатура оборудования AMD и ядер CUDA для Nvidia. Эти ядра можно рассматривать как множество отдельных вычислительных блоков в графическом процессоре, которые выполняют графические вычисления и расчеты. Чем больше ядер, тем выше производительность.

Однако сравнение ядер разных производителей может не дать точного представления о разнице в графической мощности, поскольку на производительность графического процессора могут влиять другие переменные, например тактовая частота и архитектура.

Даже в пределах одной марки GPU архитектура (дизайн или процесс, на основе которого был построен GPU) может значительно изменить производительность ядер. Сравнение количества ядер на двух картах с одной и той же архитектурой даст более прямое сравнение.

Пример количества ядер некоторых графических процессоров

  • Потоковые процессоры AMD Radeon RX 5700–2304
  • Nvidia GeForce GTX 1650 — 896 ядер CUDA

3. Тактовая частота ядра

Каждое из вышеупомянутых ядер похоже на ядро ​​ЦП в том смысле, что оно работает с определенной тактовой частотой. Эта тактовая частота указывает количество вычислений, выполняемых ядрами каждую секунду, и измеряется в МГц.

Еще раз повторим, что просто сравнивать тактовые частоты ядер — плохой способ сравнения, поскольку на производительность в целом могут влиять несколько других факторов.Однако, если все остальное идентично, более высокая тактовая частота обычно указывает на лучшую производительность.

Тактовая частота непостоянна. Например, AMD Radeon RX 5700 имеет базовую частоту 1465 МГц и частоту повышения до 1725 МГц. Базовая частота указывает на минимальную стабильную тактовую частоту процессорного ядра, а повышающая частота — это верхний предел частоты, который достигается при большой рабочей нагрузке.

Помимо этого, многие графические процессоры также поддерживают разгон, который позволяет приложениям увеличивать базовую и повышать частоту до гораздо более высоких значений, чем указано в спецификациях.

Следует иметь в виду, что более высокая тактовая частота будет выделять больше тепла и сильно зависит от тепловых условий. Поэтому, если вы планируете разогнать свой графический процессор, убедитесь, что имеется достаточное охлаждение и что температура графического процессора не превышает критические пороговые значения.

4. Тип памяти — GDDR

Память в графических картах работает так же, как и обычная оперативная память. Он временно хранит графические данные для обработки графическим процессором.

Оперативная память в графических картах называется VRAM, и в наши дни вы, вероятно, увидите карты, использующие GDDR5, GDDR5x или GDDR6 VRAM.

GDDR6 обеспечивает лучшую энергоэффективность и производительность, чем GDDR5X, которая, в свою очередь, делает то же самое по сравнению с GDDR5.

В целом графическая память более высокой версии GDDR будет работать лучше, чем более низкая версия.

5. Объем памяти

Как и в случае с обычной оперативной памятью, ее размер измеряется в ГБ. Чем больше оперативной памяти, тем лучше, так как остается больше места для хранения графической информации. Важно отметить, что производительность не может быть повышена за счет увеличения объема ОЗУ сверх определенного уровня, так как это зависит от наличия приложений или игр, которые могут правильно его использовать.

Обычно встречающиеся размеры VRAM: 4 ГБ, 6 ГБ, 8 ГБ. Стоит знать, что VRAM на видеокарте нельзя изменить или обновить, как обычную RAM на материнской плате. Видеопамять встроена в аппаратную часть видеокарты.

Большинство графических процессоров от Nvidia и AMD указывают объем поддерживаемой памяти, поэтому большинство производителей используют одинаковый объем видеопамяти для одного и того же графического процессора в своих картах.

На более мощных графических процессорах доступен больший объем оперативной памяти.

  • AMD Radeon RX 5700 — 8 ГБ
  • Nvidia GTX 1650 — 4 ГБ

6. Пропускная способность памяти

Пропускную способность памяти можно рассматривать как общую оценку производительности видеопамяти видеокарты. Пропускная способность памяти — это просто скорость доступа к видеопамяти на вашей карте и ее использование во время использования.

Пропускная способность памяти является произведением трех переменных: тактовой частоты памяти, ширины шины памяти и количества передач за такт для типа памяти.

7. Интерфейс материнской платы/подключение

Независимо от того, собираете ли вы ПК с нуля или просто обновляете графическую карту на уже имеющемся ПК, вам необходимо убедиться, что приобретаемая видеокарта совместима с материнской платой.

Раньше широко использовался интерфейс, известный как AGP (Accelerated Graphics Port), но с 2004 года его постепенно перестали использовать.

Теперь все видеокарты используют интерфейс PCI Express (PCIe) для подключения к материнской плате.

Версия PCI-E

В настоящее время PCIe 4.0 получает только первые несколько видеокарт, поэтому большинство карт, которые вы видите, будут основаны на PCIe 3.0. Очень важно знать, что PCIe обратно совместим, а это означает, что любая графическая карта PCIe будет работать с любой материнской платой, совместимой с PCIe.

Однако карта PCIe 4 не сможет полностью раскрыть свой потенциал в слоте PCIe 3, а карта PCIe 3 в материнской плате PCIe 4 не сможет реализовать всю емкость материнской платы.

Если вы планируете приобрести видеокарту высокого класса с поддержкой PCI-E 4.0, рекомендуется иметь материнскую плату с поддержкой PCI-E 4.0. Так вы получите максимальную производительность видеокарты.

Интерфейс PCIe имеет значение «x», например, x8 или x16. Это относится к количеству дорожек, которые имеет слот. Думайте об этих полосах как о полосах на скоростной автомагистрали или о водопроводных трубах.

Таким образом, x16 сможет работать с более высокой пропускной способностью, чем x8 или x4. В настоящее время большинство видеокарт x16.

8. Расчетная тепловая мощность (TDP)

Расчетная тепловая мощность или расчетная тепловая точка — это хороший способ оценить энергопотребление и тепловые характеристики графического процессора. Как следует из этого термина, он указывает мощность, необходимую для выработки максимального количества тепла, с которым может справиться система охлаждения.

Это измеряется в ваттах и ​​может повлиять на выбор других компонентов сборки вашего ПК. Вы должны убедиться, что выходная мощность вашего блока питания достаточна не только для видеокарты, но и для всех других компонентов системы.

  • AMD Radeon RX 5700 — 180 Вт
  • GeForce GTX 1650 – 75 Вт

Если ваша графическая карта имеет высокую мощность, например 180 Вт и выше, рекомендуется использовать корпус ПК с хорошей вентиляцией для максимального отвода тепла.

9. Разъемы питания

Слот PCIe может обеспечивать питание для вставленной в него карты, но только 75 Вт. Видеокарты стали настолько энергоемкими, что им не потребовалось много времени, чтобы превзойти этот предел и потребовать больше энергии.

В связи с этим современные графические процессоры имеют разъемы питания, которые позволяют им получать дополнительную мощность непосредственно от блока питания. Эти разъемы могут быть шестиконтактными или восьмиконтактными.

Современная видеокарта может иметь до двух разъемов, которые могут быть любой комбинацией. Поэтому при покупке блока питания, помимо максимальной выходной мощности, обратите внимание на разъемы питания, которые он имеет, и убедитесь, что он сможет питать вашу видеокарту.

10. Показать выходные порты

Видеокарты часто имеют несколько различных типов разъемов видеовыхода.

В зависимости от типа используемого монитора вы, скорее всего, сможете подключиться к карте через HDMI или DisplayPort, которые более распространены, когда речь идет о дисплеях.

Некоторые новые карты поддерживают подключение через порт USB Type-C, хотя мониторы с такой поддержкой встречаются реже, поскольку эта технология все еще развивается. VGA и DVI — это относительно старые порты, которые вы можете увидеть только на старых дисплеях.

Если вы хотите подключить свой компьютер к нескольким мониторам, важно обратить внимание на доступные порты и разъемы, к которым у ваших мониторов есть доступ.

В настоящее время HDMI является наиболее распространенным из доступных портов. Он существует уже давно и на то есть веские причины. Его можно увидеть на ПК, телевизорах, проигрывателях Blu-ray, игровых консолях и телевизионных приставках.

HDMI имеет преимущество, поскольку поддерживает аудио и видео в несжатом виде. Новейшая версия, HDMI 2.0, имеет достаточную пропускную способность для поддержки разрешений до 4K при частоте 60 Гц, что также может обеспечивать разрешение 1080 p при частоте 144 Гц.

HDMI 2.0 также поддерживает 10-битный и 12-битный цвет, что позволяет воспроизводить контент HDR (расширенный динамический диапазон).

ДисплейПорт

На данный момент DisplayPort так же известен, как и HDMI, и его охват приближается к тому же, что и у HDMI. Подобно HDMI, он поддерживает как аудио, так и видеовыход.

Достичь более высоких разрешений на DisplayPort всегда было просто, даже с более ранних версий. DisplayPort 1.4 может отображать до 4K при частоте 144 Гц, в то время как даже версия 1.1, которая относительно устарела, может поддерживать разрешение до 1080 p при частоте 144 Гц.

При более низкой частоте обновления DisplayPort может поддерживать разрешение до 8K, что делает его одним из немногих вариантов вывода, поддерживающих это желанное разрешение.

Новейший из них, USB Type-C, улучшен на базе, которую заложил USB Type-A. Он меньше по размеру, полностью обратим и чрезвычайно универсален. USB Type-C может передавать данные, а также аудио, видео и даже выступать в качестве зарядного устройства.

USB Type-C можно найти на ноутбуках, планшетах и ​​смартфонах, и с ростом его присутствия мониторы начинают поддерживать USB-C.

USB Type-C поддерживает разрешение до 4K с частотой обновления 60 Гц. Одним из недостатков является то, что мониторы USB-C, которые не поддерживают по крайней мере DisplayPort Alt Mode 1.2, в настоящее время не могут поддерживать технологию Adaptive-Sync.

DVI — это относительно старый тип выхода, который постепенно заменяется HDMI и DisplayPort.

Существует 3 типа DVI: DVI-A (аналоговый и фактически устаревший), DVI-D (цифровой) и DVI-I (аналоговые и цифровые сигналы). Для DVI-D и DVI-I существуют одноканальные и двухканальные варианты, последний из которых может поддерживать большую пропускную способность.

Однако DVI-D по-прежнему способен поддерживать максимальное разрешение 1080p при частоте 144 Гц.

VGA — это самый старый метод вывода на дисплей из упомянутых здесь, который в основном использовался во времена ЭЛТ-дисплеев. По мере появления плоских экранов были разработаны новые выходные интерфейсы, и более высокие разрешения стали более заметными, поскольку аналоговые сигналы VGA не могли поддерживать результирующие разрешения.

VGA может поддерживать только разрешение до 1080p при частоте 60 Гц. Порт VGA можно увидеть только на старых видеокартах. Большинство новых и последних видеокарт и материнских плат полностью лишены поддержки VGA.

Большинство новых мониторов от ведущих брендов также отказались от порта VGA и имеют либо HDMI, либо DisplayPort, либо и то, и другое.

11. Поддержка API — DirectX, OpenGL, Vulkan

Видеокарты предназначены для обработки графической информации для вашего ПК, поскольку они специально разработаны для этого. Однако для этого аппаратное и программное обеспечение должны иметь возможность взаимодействовать друг с другом и отправлять инструкции, и именно здесь на помощь приходит Graphics API.

Интерфейс прикладного программирования содержит набор инструкций, которые сообщают графическому процессору, как решать сложные графические задачи.

Существуют разные API, каждый из которых написан по-разному, но каждый из них может выполнять большинство графических задач, необходимых в наше время.

API должны специально поддерживаться видеокартой, а аппаратное обеспечение должно иметь возможность интерпретировать инструкции, предоставленные API.

DirectX 12, OpenGL 4.6 и Vulkan 1.2 — это последние версии самых популярных в настоящее время API. Большинство популярных видеокарт на базе графических процессоров AMD или Nvidia поддерживают Vulkan и DirectX.

Следует отметить, что OpenGL заменяется Vulkan в качестве межплатформенного API для трехмерной графики.

12. GFLOPS/TFLOPS

Гигафлоп или терафлоп — это единица измерения теоретической производительности процессора, которым может быть ЦП или ГП. FLOPS означает количество операций с плавающей запятой в секунду, которое указывает, сколько операций с плавающей запятой может быть выполнено за секунду.

Использование гигафлопс или терафлопс — один из лучших способов оценить относительную производительность одного процессора по сравнению с другим, хотя он не является исчерпывающим. Различия между архитектурами могут не дать точных оценок.

13. Технологии графических процессоров для конкретных поставщиков

Nvidia и AMD были конкурентами в течение многих лет, и помимо грубой графической мощности своих соответствующих предложений каждая из них постоянно разрабатывает новые технологии, чтобы предоставить потребителю лучший опыт при использовании своих видеокарт.

Эти технологии разработаны производителем и могут улучшить игровой процесс для потребителя.

Нвидиа

  • Nvidia G-Sync: это технология адаптивной синхронизации для дисплеев от Nvidia. Как с видеокартой, так и с монитором, поддерживающим G-Sync, частоту обновления дисплея можно адаптировать к частоте графического процессора, что предотвращает разрывы экрана.
  • Nvidia DLSS: DLSS расшифровывается как Deep Learning Super Sampling. Изображения визуализируются с более низким разрешением и масштабируются с помощью ИИ. Это позволяет достичь более высокой графической точности при меньших затратах на производительность.
  • Nvidia Ansel: это дополнение к программному обеспечению, которое позволяет легко делать внутриигровые снимки во время игры, а также регулировать положение и применять фильтры. Затем изображения можно очень легко опубликовать на различных платформах социальных сетей.
  • Nvidia NVLink: это интерфейс, который обеспечивает прямое соединение нескольких графических процессоров Nvidia одновременно с впечатляющей пропускной способностью. Это может позволить улучшить графическую производительность, но обычно только там, где это поддерживается.
  • Ускорение графического процессора Nvidia: во время игры, если графический процессор Nvidia работает прохладно даже на своей базовой тактовой частоте, он может интеллектуально разогнать себя до определенной частоты, чтобы повысить производительность.
  • Nvidia VR Ready: этот тег используется Nvidia, чтобы показать, что соответствующее оборудование имеет технические возможности для поддержки приложений виртуальной реальности.
  • Новости Nvidia: это программное обеспечение может обнаруживать важные моменты во время игры и автоматически записывать их. Этими снимками можно легко поделиться позже.

Заключение

Это был краткий обзор технических характеристик видеокарт. Некоторые характеристики, такие как количество ядер и объем памяти, одинаковы для всех карт с графическим процессором AMD или nvidia.

Кроме того, у каждого производителя графических процессоров есть свои собственные технологии, такие как G-Sync/FreeSync, которые могут выполнять схожие функции, но имеют технические различия в их реализации.

Также имейте в виду, что выбор видеокарты также влияет на блок питания, корпус компьютера, монитор и иногда даже на материнскую плату.

Если у вас есть какие-либо вопросы или отзывы, сообщите нам об этом в комментариях ниже.

Технический энтузиаст, блоггер, поклонник Linux и разработчик программного обеспечения. Пишет о компьютерном оборудовании, Linux и программном обеспечении с открытым исходным кодом, а также о программировании на Python, Php и Javascript. С ним можно связаться по адресу [email protected] .

3 мысли о «12 важных характеристиках видеокарт — полное руководство»

Это был лучший краткий обзор технических характеристик видеокарт. спасибо

Отличная статья, она помогает мне понять GPU :))

Вау, это именно то, на что мне нужно было наткнуться.
очень четкое объяснение нескольких переменных GPU.
Спасибо, как человеку, который собирается купить видеокарту, это помогло!

Изображения, которые вы видите на мониторе своего компьютера, состоят из крошечных точек, называемых пикселями. При наиболее распространенных настройках разрешения на экране отображается более 2 миллионов пикселей, и компьютер должен решить, что делать с каждым из них, чтобы создать изображение. Для этого ему нужен транслятор — что-то, что берет двоичные данные из процессора и превращает их в изображение, которое вы можете видеть. Этот транслятор известен как графический процессор или GPU.

Большинство потребительских ноутбуков и настольных компьютеров начального уровня теперь оснащены дополнительным графическим процессором, встроенным в основной процессор, который называется интегрированной графикой. Однако машины профессионального уровня или нестандартные машины часто также имеют место для выделенной видеокарты.Преимущество графической карты заключается в том, что она обычно может отображать более сложные изображения намного быстрее, чем встроенный чип.

Работа видеокарты сложна, но ее принципы и компоненты легко понять. В этой статье мы рассмотрим основные части видеокарты и то, что они делают. Мы также рассмотрим факторы, которые вместе создают быструю и эффективную видеокарту.

Подумайте о компьютере как о компании с собственным художественным отделом. Когда люди в компании хотят произведение искусства, они отправляют запрос в художественный отдел. Художественный отдел решает, как создать изображение, а затем переносит его на бумагу. Конечным результатом является то, что чья-то идея становится реальным изображением, которое можно увидеть.

Графическая карта работает по тому же принципу. Центральный процессор, работая совместно с программными приложениями, отправляет информацию об изображении на графическую карту. Видеокарта решает, как использовать пиксели на экране для создания изображения. Затем он отправляет эту информацию на монитор по кабелю.

Создание изображения из двоичных данных — сложный процесс. Чтобы создать трехмерное изображение, графическая карта сначала создает каркас из прямых линий. Затем он растрирует изображение (заполняет оставшиеся пиксели). Он также добавляет освещение, текстуру и цвет. Для динамичных игр компьютер должен проходить этот процесс от 60 до 120 раз в секунду. Без видеокарты для выполнения необходимых вычислений нагрузка на компьютер была бы слишком велика.

Видеокарта выполняет эту задачу, используя четыре основных компонента:

  • Подключение материнской платы для передачи данных и питания.
  • Графический процессор (GPU), решающий, что делать с каждым пикселем на экране.
  • Видеопамять (VRAM) для хранения информации о каждом пикселе и временного хранения завершенных изображений.
  • Подключение к монитору, чтобы вы могли видеть конечный результат.

Далее мы более подробно рассмотрим процессор и память.

Графический процессор — это электронная схема, которую ваш компьютер использует для ускорения процесса создания и рендеринга компьютерной графики. ЧАЛЕРМПХОН СРИСАНГ/Shutterstock

Как и материнская плата, видеокарта представляет собой печатную плату, на которой размещены процессор и видеопамять. Он также имеет микросхему системы ввода/вывода (BIOS), которая сохраняет настройки карты и выполняет диагностику памяти, ввода и вывода при запуске.

Процессор видеокарты, называемый графическим процессором (GPU), аналогичен процессору компьютера. Однако GPU разработан специально для выполнения сложных математических и геометрических вычислений, необходимых для рендеринга графики. Некоторые из самых быстрых графических процессоров имеют больше транзисторов, чем средний ЦП.

Графический процессор выделяет много тепла, поэтому его обычно размещают под радиатором или вентилятором. Интегрированные чипы немного отличаются тем, что у них нет собственной видеопамяти, и они должны использовать тот же запас ОЗУ, что и ЦП. Это различие может привести к нехватке памяти в вашей системе во время игры со встроенным графическим процессором.

Помимо своей вычислительной мощности, графический процессор использует специальное программирование, помогающее анализировать и использовать данные. AMD и nVidia производят подавляющее большинство графических процессоров на рынке, и обе компании разработали собственные усовершенствования для повышения производительности графических процессоров. Современные видеопроцессоры могут обеспечить:

  • Сглаживание всей сцены (FSAA), которое сглаживает края трехмерных объектов.
  • Анизотропная фильтрация (AF), которая делает изображения более четкими.
  • Физика в реальном времени и эффекты частиц
  • Многоэкранные дисплеи
  • Видео с высокой частотой кадров
  • Видео сверхвысокой четкости с миллионами пикселей.
  • Вычисления с ускорением GPU

Каждая компания также разработала специальные методы, помогающие графическому процессору применять цвета, тени, текстуры и узоры.

Поскольку графический процессор создает изображения, ему нужно где-то хранить информацию и готовые изображения. Для этого он использует оперативную память карты, сохраняя данные о каждом пикселе, его цвете и расположении на экране. Часть видеопамяти также может выступать в качестве буфера кадров, что означает, что она хранит завершенные изображения до тех пор, пока не придет время их отображать. Как правило, видеопамять работает на очень высоких скоростях и является двухпортовой, что означает, что система может считывать из нее и записывать в нее одновременно.

Современные видеокарты подключаются к слоту расширения PCIe x16. Компьютеры малого форм-фактора со встроенной графикой, такие как ноутбуки и мини-настольные компьютеры, могут не иметь такого слота. Однако видеокарты по-прежнему можно подключать с помощью дорогостоящего обходного устройства, называемого внешним графическим процессором.

Графические карты прошли долгий путь с тех пор, как IBM представила первую из них в 1981 году. Эта карта, получившая название адаптера монохромного дисплея (MDA), обеспечивала отображение только текста зеленого или белого текста на черном экране.Теперь и видеокарты, и встроенные чипы могут легко передавать сигнал HD (1920 x 1080 пикселей) через кабель HDMI или DisplayPort. Автономные карты часто воспроизводят видео в формате Ultra HD 4K (3840 x 2160), а на графических процессорах с более высокими характеристиками доступно еще более высокое разрешение.

С тех пор, как 3dfx представила оригинальный ускоритель Voodoo, никакое отдельное оборудование на ПК не оказывало такого сильного влияния на способность вашей машины играть, как скромная видеокарта. В то время как другие компоненты абсолютно важны, топовый ПК с 32 ГБ ОЗУ, процессором за 4000 долларов и хранилищем на основе PCIe задохнется и умрет, если его попросят запускать современные игры AAA на карте десятилетней давности с современными разрешениями и уровнями детализации. . Видеокарты, также известные как GPU (графические процессоры), имеют решающее значение для производительности игры, и мы подробно их освещаем. Но мы не часто погружаемся в то, что заставляет GPU работать и как работают карты.

По необходимости это будет общий обзор функциональных возможностей графических процессоров, а также информация, общая для интегрированных графических процессоров AMD, Nvidia и Intel, а также любых дискретных карт, которые Intel может создать в будущем на основе архитектуры Xe. Он также должен быть общим для мобильных графических процессоров, созданных Apple, Imagination Technologies, Qualcomm, ARM и другими поставщиками.

Почему мы не запускаем рендеринг с помощью процессоров?

Первое, на что я хочу обратить внимание, это то, почему мы вообще не используем ЦП для рендеринга рабочих нагрузок в играх. Честный ответ на этот вопрос заключается в том, что вы можете запускать рабочие нагрузки рендеринга непосредственно на ЦП. Ранние 3D-игры, предшествовавшие широкому распространению видеокарт, такие как Ultima Underworld, полностью работали на процессоре. UU — полезный справочный случай по нескольким причинам — у него был более продвинутый движок рендеринга, чем в таких играх, как Doom, с полной поддержкой просмотра вверх и вниз, а также расширенными функциями, такими как наложение текстур. Но за такую ​​поддержку пришлось дорого заплатить — у многих не было ПК, на котором можно было бы запустить игру.

Подземный мир Ultima. Изображение предоставлено GOG

На заре 3D-игр во многих играх, таких как Half-Life и Quake II, использовался программный рендерер, позволяющий играть в игры без 3D-ускорителей. Но причина, по которой мы убрали эту опцию из современных игр, проста: процессоры разработаны как микропроцессоры общего назначения, что является еще одним способом сказать, что им не хватает специализированного оборудования и возможностей, которые предлагают графические процессоры. Современный процессор может легко справиться с играми, которые 18 лет назад имели тенденцию к заиканию при работе в программном обеспечении, но ни один процессор на Земле не смог бы легко справиться с современной игрой AAA, если бы она работала в этом режиме. По крайней мере, без кардинальных изменений сцены, разрешения и различных визуальных эффектов.

В качестве забавного примера: Threadripper 3990X способен запускать Crysis в программном режиме, хотя и не так хорошо.

Что такое GPU?

Графический процессор — это устройство с набором определенных аппаратных возможностей, предназначенных для точного сопоставления с тем, как различные 3D-движки выполняют свой код, включая настройку и выполнение геометрии, наложение текстур, доступ к памяти и шейдеры. Существует связь между тем, как работают 3D-движки, и тем, как разработчики графических процессоров создают оборудование. Некоторые из вас, возможно, помнят, что семейство AMD HD 5000 использовало архитектуру VLIW5, а некоторые высокопроизводительные графические процессоры семейства HD 6000 использовали архитектуру VLIW4. С GCN AMD изменила свой подход к параллелизму во имя получения более полезной производительности за такт.

Архитектура AMD, последовавшая за GCN, RDNA, удвоила идею повышения IPC, с инструкциями, отправляемыми каждый такт. Это улучшило IPC на 25 процентов. RDNA2 опирается на эти преимущества и добавляет такие функции, как огромный кэш L3, для дальнейшего повышения производительности. Точно так же семейство графических процессоров Nvidia эволюционировало за тот же период времени: от дополнительного параллелизма, реализованного в Kepler, до поддержки половинной точности и специализированных тензорных блоков, реализованных Nvidia в своих микроархитектурах Turing и Pascal.

Nvidia впервые ввела термин «GPU» с запуском оригинальной GeForce 256 и ее поддержкой аппаратного преобразования и расчетов освещения на GPU (это примерно соответствовало запуску Microsoft DirectX 7). Интеграция специализированных возможностей непосредственно в аппаратное обеспечение была отличительной чертой ранней технологии графических процессоров.Многие из этих специализированных технологий все еще используются (в самых разных формах). Иметь выделенные ресурсы на кристалле для обработки определенных типов рабочих нагрузок более эффективно и быстро, чем пытаться выполнять всю работу в одном массиве программируемых ядер.

Примечание. Нельзя сравнивать или оценивать относительную игровую производительность AMD, Nvidia и Intel, просто сравнивая количество ядер графического процессора. В пределах одного и того же семейства графических процессоров (например, в сериях Nvidia GeForce GTX 10, 20 или 30 или семействе AMD RX 4xx или 5xx) большее количество ядер графического процессора означает, что графический процессор более мощный, чем карта нижнего уровня. Сравнения на основе FLOPS подозрительны по причинам, обсуждаемым здесь.

Причина, по которой вы не можете делать немедленные выводы о производительности графических процессоров между производителями или семействами ядер, основываясь исключительно на количестве ядер, заключается в том, что разные архитектуры более и менее эффективны. В отличие от центральных процессоров, графические процессоры предназначены для параллельной работы. И AMD, и Nvidia структурируют свои карты в виде блоков вычислительных ресурсов. Nvidia называет эти блоки SM (Streaming Multiprocessor), а AMD называет их вычислительным блоком.

Мультипроцессор Pascal Streaming (SM).

Каждый блок содержит группу ядер, планировщик, регистровый файл, кэш инструкций, текстуру и кэш L1, а также блоки наложения текстур. SM/CU можно рассматривать как наименьший функциональный блок GPU. Он не содержит буквально всего — механизмы декодирования видео, выходные данные рендеринга, необходимые для фактического вывода изображения на экран, и интерфейсы памяти, используемые для связи со встроенной видеопамятью, — все это выходит за рамки его компетенции — но когда AMD ссылается на APU как на 8 или 11 вычислительных блоков Vega, это (эквивалентный) блок кремния, о котором они говорят. И если вы посмотрите на блок-схему графического процессора, любого графического процессора, вы заметите, что именно SM/CU дублируется на изображении десятки или более раз.

А вот и Pascal, полная версия.

Чем больше блоков SM/CU в графическом процессоре, тем больше работы он может выполнять параллельно за такт. Рендеринг — это тип проблемы, который иногда называют «досадно параллельным», что означает, что он может очень хорошо масштабироваться вверх по мере увеличения количества ядер.

Когда мы обсуждаем конструкции графических процессоров, мы часто используем формат, который выглядит примерно так: 4096:160:64. Количество ядер графического процессора — первое число. Чем он больше, тем быстрее GPU, при условии, что мы сравниваем внутри одного семейства (GTX 3070 против GTX 3080 против GTX 3080 Ti, RX 5700 XT против RX 6700 XT и т. д.).

Отображение текстуры и результат рендеринга

Есть еще два основных компонента графического процессора: блоки наложения текстур и выходные данные рендеринга. Количество блоков наложения текстуры в проекте определяет максимальный вывод текселей и то, как быстро он может адресовать и накладывать текстуры на объекты. Ранние 3D-игры использовали очень мало текстурирования, потому что работа по рисованию трехмерных многоугольных фигур была достаточно сложной. Текстуры на самом деле не требуются для 3D-игр, хотя список игр, в которых они не используются в наше время, чрезвычайно мал.

Количество блоков наложения текстур в графическом процессоре обозначается второй цифрой в метрике 4096:160:64. AMD, Nvidia и Intel обычно меняют эти цифры одинаково, увеличивая и уменьшая семейство графических процессоров. Другими словами, вы вряд ли найдете сценарий, в котором один графический процессор имеет конфигурацию 4096:160:64, а графический процессор выше или ниже него в стеке имеет конфигурацию 4096:320:64. Отображение текстур может быть узким местом в играх, но следующий по величине графический процессор в стеке продуктов обычно предлагает как минимум больше ядер графического процессора и блоков наложения текстур (большее количество ROP у более дорогих карт зависит от семейства графических процессоров и конфигурации карты). ).

Выводы рендеринга (также иногда называемые конвейерами растровых операций) — это место, где выходные данные графического процессора собираются в изображение для отображения на мониторе или телевизоре. Количество выходных данных рендеринга, умноженное на тактовую частоту графического процессора, определяет скорость заполнения пикселей. Большее количество ROP означает, что одновременно может выводиться больше пикселей. ROP также поддерживают сглаживание, а включение сглаживания — особенно сглаживания с суперсэмплингом — может привести к ограничению скорости заполнения игры.

Пропускная способность памяти, объем памяти

Последние компоненты, которые мы обсудим, — это пропускная способность и емкость памяти. Пропускная способность памяти относится к тому, сколько данных может быть скопировано в выделенный буфер видеопамяти графического процессора и из него в секунду. Многие расширенные визуальные эффекты (и более высокие разрешения в целом) требуют большей пропускной способности памяти для работы с разумной частотой кадров, поскольку они увеличивают общий объем данных, копируемых в ядро ​​графического процессора и из него.

В некоторых случаях недостаточная пропускная способность памяти может стать существенным узким местом для графического процессора. APU AMD, такие как Ryzen 5 3400G, сильно ограничены в пропускной способности, а это означает, что увеличение тактовой частоты DDR4 может оказать существенное влияние на общую производительность. Выбор игрового движка также может оказать существенное влияние на то, какая пропускная способность памяти необходима графическому процессору, чтобы избежать этой проблемы, равно как и целевое разрешение игры.

Общий объем встроенной памяти — еще один важный фактор для графических процессоров. Если объем видеопамяти, необходимой для работы с заданным уровнем детализации или разрешением, превышает доступные ресурсы, игра часто все еще будет работать, но ей придется использовать основную память ЦП для хранения дополнительных данных текстуры, а для графического процессора требуется значительно больше времени. для извлечения данных из DRAM, а не из встроенного пула выделенной VRAM. Это приводит к массовым зависаниям, поскольку игра колеблется между извлечением данных из быстрого пула локальной памяти и общей системной ОЗУ.

Одна вещь, о которой следует помнить, это то, что производители графических процессоров иногда оснащают карты младшего или среднего класса большим объемом видеопамяти, чем это предусмотрено стандартом, чтобы немного увеличить цену за продукт. Мы не можем сделать абсолютный прогноз относительно того, сделает ли это GPU более привлекательным, потому что, честно говоря, результаты различаются в зависимости от рассматриваемого GPU. Что мы можем вам сказать, так это то, что во многих случаях не стоит платить больше за карту, если единственная разница заключается в большем буфере ОЗУ. Как правило, младшие графические процессоры, как правило, сталкиваются с другими узкими местами, прежде чем их задушит ограниченная доступная память. Если вы сомневаетесь, ознакомьтесь с обзорами карты и поищите сравнения того, превосходит ли версия на 2 ГБ версию с 4 ГБ или каким бы ни был соответствующий объем оперативной памяти. Чаще всего, если предположить, что все остальные решения одинаковы, вы обнаружите, что более высокая загрузка ОЗУ не стоит платить.

Ознакомьтесь с нашей серией объяснений ExtremeTech, в которой более подробно рассматриваются самые актуальные технические темы современности.

Некоторые решения для игровых ПК даются легко. Например, ответ на вопрос, следует ли вам увеличить объем памяти на жестком или твердотельном диске, скорее всего, будет восторженным «Да!» либо.

Однако другие решения гораздо сложнее. Знать, следует ли вам обновить свой процессор или графический процессор, например, гораздо сложнее. Мы здесь, чтобы помочь с этим решением.

Обзор ЦП и ГП

Что такое ЦП?

Центральный процессор (ЦП), также называемый «процессором», выполняет и контролирует инструкции компьютерной программы, выполняя операции ввода/вывода (I/O), основные арифметические и логические операции. Неотъемлемая часть любого компьютера. ЦП получает, направляет и обрабатывает данные компьютера.

Поскольку это обычно самый важный компонент, его часто называют «мозгом» или «сердцем» настольного или портативного ПК, в зависимости от того, какую часть тела вы считаете наиболее важной. А когда дело доходит до игр, это довольно важный компонент игровой системы.

Ядро ЦП — это еще одно слово для процессора ЦП — все они являются синонимами. Исторически у процессоров было только одно ядро, которое фокусировалось на одной единственной задаче. Однако современные процессоры имеют от 2 до 28 ядер, каждое из которых предназначено для решения уникальной задачи. Таким образом, многоядерный процессор — это один чип, содержащий два или более ядер ЦП.

ЦП с большим количеством ядер более эффективны, чем процессоры с меньшим количеством ядер. Двухъядерные (или 2-ядерные) процессоры широко распространены, но все более популярными становятся процессоры с 4 ядрами, также называемые четырехъядерными процессорами (например, процессоры Intel® Core™ 8-го поколения).

Что такое графический процессор?

Графический процессор (GPU), также называемый видеокартой или видеокартой, представляет собой специализированную электронную схему, которая ускоряет создание и рендеринг изображений, видео и анимации. Он выполняет быстрые математические вычисления, освобождая ЦП для выполнения других задач.

Существует два типа графических процессоров. Один из них – это интегрированный (или встроенный) графический процессор, который находится непосредственно на процессоре и использует с ним общую память. А другой — дискретный графический процессор со своей картой и памятью.

Графический процессор — чрезвычайно важный компонент игровой системы, и во многих случаях даже более важный, чем процессор, когда дело доходит до игры в определенные типы игр.

Простое описание. Графический процессор — это однокристальный процессор, который используется в основном для управления и повышения производительности видео и графики.

В чем «основная» разница между CPU и GPU

В то время как центральный процессор использует несколько ядер, ориентированных на последовательную обработку, графический процессор создан для многозадачности; он имеет от сотен до тысяч ядер меньшего размера для одновременной обработки тысяч потоков (или инструкций).

Некоторые ЦП используют технологию Hyper-Threading, которая позволяет одному ядру ЦП действовать как два отдельных виртуальных (или «логических») ядра или потока. Идея заключается в том, что они могут распределять рабочую нагрузку между собой и увеличивать количество инструкций, воздействующих на отдельные данные при одновременном выполнении, что повышает производительность.

Что важнее для компьютерных игр: CPU или GPU?

Многие считают, что графический процессор наиболее важен для компьютерных игр. Это потому, что графический процессор — это то, что на самом деле обрабатывает изображения, сцены и анимацию, которые вы видите. Большинство современных динамичных игр невероятно требовательны к той мощности рендеринга, которую обеспечивает графический процессор. В то же время эти игры разработаны с учетом преимуществ многоядерности и потоков, предлагаемых новыми процессорами.

ЦП и ГП важны сами по себе. Для ресурсоемких игр требуется как интеллектуальный процессор, так и мощный графический процессор. Но вопрос о том, насколько они важны для компьютерных игр, зависит от того, для чего они будут использоваться в первую очередь и для каких именно игр.

Во время игры процессорам поручаются определенные задачи, с которыми GPU не очень хорошо справляется, например функции искусственного интеллекта (ИИ) неигровых персонажей (NPC). Однако многие задачи лучше выполнять на графическом процессоре.

Некоторые игры работают лучше с большим количеством ядер, потому что они действительно используют их. Другие не могут, потому что они запрограммированы на использование только одного ядра, а игра работает лучше с более быстрым процессором. В противном случае ему не хватит мощности для работы и он будет тормозить.

Minecraft, например, работает только с одним ядром, поэтому ему не требуется дополнительная мощность. В этом случае частота процессора — это единственное, что будет влиять на количество кадров в секунду (FPS) во время игры.

Какие типы игр требуют больше ресурсов процессора?

Сегодняшние динамичные игры, в том числе шутеры от первого лица (FPS), многопользовательские игры, игры с открытой песочницей и многое другое, созданы с учетом преимуществ новейших процессоров, их многоядерных процессоров и потоков. На самом деле, они требуют, чтобы они хорошо играли.

Например, в многопользовательском шутере от первого лица Call of Duty: Black Ops 4 рекомендуется как минимум четырехъядерный процессор: либо Intel i5-2500K с 4 ядрами и 4 потоками или AMD Ryzen R5 1600X с 6 ядрами и 12 потоками.

Аналогичным образом, известная многопользовательская ролевая онлайн-игра (MMORPG) World of Warcraft также рекомендует четырехъядерные процессоры: Intel i7-4770 (4 ядра, 8 потоков) или AMD FX- 8310 (8 ядер, 8 потоков) или лучше.

В чрезвычайно популярной онлайн-игре с открытым миром Grand Theft Auto V рекомендуется процессор Intel i5 3470 (4 ядра, 4 потока) или AMD FX-8350 (8 ядер, 8 потоков). А для эпической игры Fortnite Battle Royale в жанре королевской битвы рекомендуется как минимум процессор Intel i5 с тактовой частотой 2,8 ГГц, 4 ядра и 4 потока.

Какие типы игр требуют больше ресурсов графического процессора?

Большинство современных игр требуют от графического процессора многого, может быть, даже больше, чем от процессора. Обработка 2D- и 3D-графики, рендеринг полигонов, наложение текстур и многое другое требуют мощных и быстрых графических процессоров. Чем быстрее ваша графическая/видеокарта (GPU) может обрабатывать информацию, тем больше кадров вы будете получать каждую секунду.

Например, рекомендуемая видеокарта для Call of Duty: Black Ops 4: NVIDIA GeForce GTX 970 4 ГБ, GTX 1060 6 ГБ или Radeon R9 390/AMD RX 580. Все они считаются карты среднего класса, которые хороши для игр с разрешением 1080p и запуска игр на средних или даже высоких настройках с более высоким разрешением. Обозначение 1080p относится к разрешению (Full HD) 1920 x 1080 пикселей.

Для более конкурентоспособных игроков Call of Duty: Black Ops 4 рекомендует видеокарты GeForce GTX 1080 или Radeon RX Vega 64. Это карты высокого класса, которые подходят для игр с разрешением 1440p Quad HD (QHD) или мониторов с более высокой частотой обновления, а также для гарнитур виртуальной реальности.

Но вам нужно убедиться, что ваш монитор соответствует этим спецификациям (например, с частотой обновления 144 Гц), в противном случае не имеет смысла приобретать более качественный и дорогой монитор. видеокарта. Верно и обратное: если у вас есть монитор с частотой обновления до 60 Гц, он не сможет идти в ногу с более мощной картой, способной увеличивать количество пикселей.

Для World of Warcraft рекомендуемым графическим процессором является NVIDIA GeForce GTX 960 4 ГБ или AMD Radeon R9 280 или лучше. GTX 960 предлагает стабильную производительность 1080p с энергоэффективным энергопотреблением и работает тише и меньше нагревается, чем предыдущие модели. Хотя у R9 280 больше видеопамяти, чем у GTX 960, оба графических процессора могут запускать требовательные игры при высоких настройках.

Как для гигантской приключенческой игры-песочницы Grand Theft Auto V, так и для вундеркинда королевской битвы Fortnite Battle Royale рекомендуется NVIDIA GeForce GTX 660 2 ГБ или AMD Radeon. HD 7870 2гб. Оба графических процессора имеют приличную цену и созданы для быстрых игр с разрешением 1080p.

Должен ли я обновить свой GPU или CPU?

В идеальном мире вы бы просто купили лучшее из обоих. К сожалению, бюджетные ограничения могут привести к необходимости выбора одного или другого, по крайней мере, на данный момент.

В настоящее время многие игры, разумеется, используют больше ядер (четырехъядерный ЦП, по-видимому, является наиболее распространенным) и, таким образом, имеют более высокую и лучшую частоту кадров в секунду. Поэтому вы, вероятно, предпочтете более дорогие четырехъядерные процессоры, если они не слишком дорогие.

Существующие двухъядерные процессоры могут стать узким местом для вашей видеокарты и привести к снижению производительности в играх, если только ваш графический процессор не является более старой и менее мощной версией.

Четырехъядерные процессоры также более доступны, более производительны и менее медленны, чем более ранние версии. Поскольку все больше и больше новых игр полагаются на несколько ядер, а не только на скорость процессора, имеет смысл иметь больше ядер в вашей системе.

На самом деле, если вы заядлый геймер, смотрите в будущее и хотите убедиться, что сможете запускать самые энергоемкие игры уровня ААА (ААА) в будущем, и, возможно, что более важно, вы могут позволить себе чрезвычайно высокие цены — может быть даже разумнее выбрать премиум-варианты на процессоре или графическом процессоре.

Что касается ЦП, то одним из самых мощных процессоров Intel на рынке сегодня является серия Intel Core i9. Две модели, i9-8950HK и i9-9900K, обеспечивают невероятно высокую производительность и скорость обработки игрового процесса благодаря 8 ядрам и 16 потокам.

Если у вас есть или вы планируете приобрести монитор 4K/Ultra High Definition (UHD) с разрешением более 8 миллионов пикселей, вы можете рассмотреть возможность замены своего графического процессора на карту, например NVIDIA GeForce RTX 2080. Ти. Однако это стоит более 1000 долларов США.

Что следует учитывать при обновлении графического процессора

<р>1. Разрешение монитора. Большинство современных видеокарт соответствуют минимальным игровым требованиям для разрешения 1080p. Однако вам потребуется видеокарта высокого класса, чтобы соответствовать любому монитору с разрешением 1440 пикселей и выше, включая QHD, WQHD, UHD или 4K.

<р>2. Частота обновления: если ваш монитор имеет частоту обновления 144 Гц или выше, вам также понадобится карта, которая столь же мощна, чтобы раскрыть весь ее потенциал. При этом для монитора с частотой обновления 60 Гц не нужна мощная и дорогая видеокарта.

<р>3. Память. Память важна не только для процессора. Ваш графический процессор должен предлагать не менее 4 ГБ для интенсивных игр с разрешением 1080 p и не менее 8 ГБ, если вы хотите играть в мега-игры с разрешением 4K.

<р>4. Форм-фактор: проверьте характеристики видеокарты, поскольку высота, длина и обхват являются важными параметрами, которые следует учитывать при выборе графического процессора. Вам нужно, чтобы он поместился в вашей игровой системе или корпусе.

Графические карты доступны в таких конфигурациях, как половинная высота, полная высота, один слот, два слота и т. д. Сделайте свою домашнюю работу, чтобы избежать ненужных затрат и разочарований при установке.

<р>5. AMD FreeSync или NVIDIA G-Sync: эти две технологии синхронизируют частоту обновления между графическим процессором и вашим монитором, чтобы уменьшить или устранить разрывы. Перед покупкой новой видеокарты обязательно проверьте, какую технологию поддерживает ваш монитор.

<р>6. Поддержка виртуальной реальности: если вы собираетесь использовать одну из двух основных игровых платформ виртуальной реальности для ПК — HTC Vive или Oculus Rift — вам потребуются карты как минимум среднего уровня, такие как NVIDIA GTX 1060/1070/1080 или AMD. Радеон РХ 570/580.

Узнайте свои игровые требования

Обновление вашей игровой системы и, в частности, вашего процессора или графического процессора — очень субъективная ситуация. Вы можете сделать это, чтобы играть в определенную игру или в определенный тип игры. Вы можете быть случайным игроком, который просто хочет время от времени играть в разные игры.

Или вы можете быть хардкорным геймером, который достаточно много играет, чтобы нуждаться в обработке и производительности, которые будут соответствовать вашему напряженному игровому графику.

Необходимо также учитывать ваш бюджет. Если у вас есть ограниченное количество ресурсов для работы, но есть возможность периодически расширять игровое оборудование, возможно, имеет смысл делать поэтапные более экономичные обновления.

Но если вы знаете, что будете играть в новейшие и лучшие игры уровня AAA, как только они будут выпущены, и у вас есть доступный бюджет, возможно, стоит выбрать самый мощный ЦП и ГП, которые вы можете себе позволить. это.

Итог

Графические процессоры могут быть самой дорогой частью вашей игровой сборки, поэтому, если у вас более ограниченный бюджет, может быть хорошей идеей оставить часть этого для вашего процессора. Если вы тратите слишком много на GPU, не обращая внимания на CPU, ваш игровой процесс может пострадать из-за более низкой частоты кадров в секунду.

Если вам нравятся динамичные игры, такие как шутеры от первого лица, такие как Call of Duty: Black Ops 4, или стратегии в реальном времени, такие как The Age of Empires em> или MMORPG, например World of Warcraft, то, возможно, имеет смысл сначала обновить процессор.

С другой стороны, если вы в основном играете в онлайн-игры с открытым миром с четко определенной, захватывающей средой и потрясающими визуальными эффектами, такими как Grand Theft Auto V или ролевые игры, такие как The Elder Scrolls V : Skyrim или The Witcher III: Wild Hunt, затем сначала обновите графический процессор и начните копить на новый процессор.

Об авторе

Джолин Доббин — автор статей для HP® Tech Takes. Джолин — писательница из Восточного побережья, имеющая опыт создания стратегических сообщений, маркетинговых и коммерческих материалов для компаний, работающих в сфере высоких технологий.

Популярные игровые ПК HP

Связанные теги

Популярные статьи

Также посетите

Архивы статей

Нужна помощь?

Рекомендованная производителем розничная цена HP может быть снижена. Рекомендованная производителем розничная цена HP указана либо как отдельная цена, либо как зачеркнутая цена, а также указана цена со скидкой или рекламная цена. На скидки или рекламные цены указывает наличие дополнительной более высокой рекомендованной розничной цены зачеркнутой цены.

Ultrabook, Celeron, Celeron Inside, Core Inside, Intel, логотип Intel, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, логотип Intel Inside, Intel vPro, Itanium, Itanium Inside, Pentium, Pentium Inside, vPro Inside , Xeon, Xeon Phi, Xeon Inside и Intel Optane являются товарными знаками корпорации Intel или ее дочерних компаний в США и/или других странах.

Домашняя гарантия доступна только для некоторых настраиваемых настольных ПК HP. Необходимость обслуживания на дому определяется представителем службы поддержки HP. Заказчику может потребоваться запустить программы самопроверки системы или исправить выявленные неисправности, следуя советам, полученным по телефону. Услуги на месте предоставляются только в том случае, если проблема не может быть устранена удаленно. Услуга недоступна в праздничные и выходные дни.

HP передаст ваше имя и адрес, IP-адрес, заказанные продукты и связанные с ними расходы, а также другую личную информацию, связанную с обработкой вашего заявления, в Bill Me Later®. Bill Me Later будет использовать эти данные в соответствии со своей политикой конфиденциальности.

Подходящие продукты/покупки HP Rewards определяются как принадлежащие к следующим категориям: принтеры, ПК для бизнеса (марки Elite, Pro и рабочие станции), выберите аксессуары для бизнеса и выберите чернила, тонер и бумага.

Читайте также: