Монитор позволяет получить на экране 65 536 цветов, сколько требуется памяти в байтах

Обновлено: 05.07.2024

Основы работы с цифровыми изображениями

Содержание:
1) Мотивы использования цифровых изображений.
2) Требования к генерации и хранению цвета (RGB).
3) Апплет для смешивания цветов.
4) Дизеринг.
5) Расчет места для хранения.
6) Уменьшение глубины цвета
7) Стандартные отраслевые форматы (GIF, JPEG, TIFF, BMP, PICT).


Носители для хранения и срок годности
Традиционно визуальная информация записывалась художником с использованием различных носителей или фотографами с помощью фотопленки. Каждый носитель имеет свой набор преимуществ, привлекательных для конкретного художника или фотографа. Каждая среда также имеет свой собственный набор ограничений. Например, камень, используемый скульптором, ограничен в цветовой гамме. В меньшей степени пленка и краска не всегда могут иметь желаемый цветовой диапазон. Однако скульптура продлевает жизнь, если ее должным образом защитить от непогоды. И краска, и фотопленка более подвержены разрушительному действию времени, теряя яркость цвета и четкость изображения. В частности, кинематографические изображения со временем исчезают до неузнаваемости. Срок службы черно-белой фотографии обычно составляет от 100 до 150 лет, если отпечатки и негативы хранятся в темноте при контролируемой температуре и влажности, когда их не просматривают. Большинство красок и пленок разлагаются (выцветают) в присутствии света. Срок годности цветной фотографии гораздо короче, возможно, всего от 40 до 80 лет. Большая часть ранних цветных фотодокументов эпохи президента Джона Ф. Кеннеди (1961–1963) была утеряна. Эти разрушительные действия можно предотвратить, если хранить носители (отпечатки, негативы, картины, письменные документы) в условиях с регулируемым освещением, температурой и влажностью, но не предотвращать их.

С другой стороны, цифровые изображения не подвержены старению в смысле потери цвета или резкости. Однажды записанный, он существует без потери качества в течение всего срока службы носителя. Кроме того, в отличие от других носителей, возможно изготовление точных копий. Возможность делать копии без потери качества — важная характеристика цифровых носителей. Если бы потолок Сикстинской капеллы работы Микеланджело был записан в цифровом виде после завершения, его реставраторам не пришлось бы сегодня задаваться вопросом, восстановили ли они его в точных цветах и ​​линиях, созданных художником.
Вернуться к содержанию.
Требования к цвету и памяти
Традиционные телевизоры используют аналоговые сигналы для отображения изображений (синусоидальные сигналы). Компьютерные мониторы цифровые по своей природе. Изображение на мониторе состоит из рядов маленьких точек, называемых пикселями. С каждым пикселем связан цвет. с этим. Когда точки достаточно малы и расположены достаточно близко друг к другу, глаз воспринимает не точки, а непрерывное изображение. Типичная плотность записи для мониторов персональных компьютеров (ПК) включает 640 (по горизонтали) на 480 (по вертикали, стандартный VGA), 800 на 600 и 1024 на 768 (SVGA). Как правило, чем больше вы платите, тем выше разрешение и потенциальное качество изображения. Еще одним важным соображением является количество цветов, связанных с каждым пикселем. Монохромные экраны, например черно-белые или янтарно-черные, ассоциируют только два цвета с каждым пикселем. Другие распространенные ассоциации: 256 цветов на пиксель; 32 768 цветов; 65 536 цветов и 16 777 216 цветов на пиксель. Диапазон доступных цветов называется палитрой. Основное ограничение на размер палитры (количество цветов) традиционно было связано с объемом памяти, необходимой для хранения и/или отображения изображения. Компьютеры используют двоичную систему счисления для записи информации. Базовой единицей информации является «бит», который может хранить только два значения. Таким образом, для монохромных экранов требуется только один бит на пиксель. Для хранения более двух цветов на пиксель используются группы связанных битов. Например, чтобы связать 256 цветов с пикселем, требуется 8 бит (2**8 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 256); Для 32 766 цветов требуется 16 бит. На самом деле ситуация немного сложнее. Для представления цвета на экране каждый пиксель фактически состоит из трех цветовых компонентов: красного, зеленого и синего. Их часто называют значением RGB пикселя. Например, предположим, что значение (интенсивность) красного, зеленого и синего может принимать 256 значений (от 0 до 255) для пикселя. Значение RGB (255, 0, 0) будет означать красный пиксель, значение RGB (0, 255, 0) будет зеленым, а значение RGB (0, 0, 255) будет синим. RGB (255, 255, 255) — белый, (0, 0, 0) — черный. Изменение значения RGB трех цветовых элементов заставляет глаз воспринимать широкий диапазон цветов. Это означает, что (3 цвета) * (8 бит на цвет) = 24 бита для записи цвета для каждого пикселя. Общий диапазон цветов при 24 битах на пиксель (8 на значение RGB) составляет 256 * 256 * 256 = 16 777 216 цветов.Кроме того, многие мониторы сохраняют значение непрозрачности изображения, для которого требуется еще больше битов (обычно 8 бит). Непрозрачность указывает, какая часть изображения ниже текущего изображения может просвечиваться. В дополнение к предоставлению художнику свободы выражения, непрозрачность позволяет использовать цифровые водяные знаки для защиты материала от интеллектуальной кражи.

Вернуться к содержанию.
Вы можете поэкспериментировать со смешением цветов со следующим апплетом Java. Ваш дисплей может не поддерживать 16 777 216. Если он поддерживает меньше максимального количества цветов, он сопоставит указанный вами цвет с ближайшим цветом в его ограниченной палитре. Квадрат на экране должен быть розовым (RGB = 255, 175, 175), если ваш монитор настроен правильно и розовый цвет находится в палитре. Введите нужные значения для красного, зеленого и синего (от 0 до 255), а затем нажмите клавишу возврата, чтобы обновить экран.


Вернуться к содержанию.
Дизеринг
Многие программные пакеты используют процесс, называемый дизерингом, для создания большего количества цветов, чем позволяет текущая цветовая палитра. Основной процесс заключается в смешивании блоков пикселей разных цветов на вкус в чередующихся узорах. Вблизи эффект кажется лоскутным. На расстоянии глаз смешивает цвета, создавая эффект желания. Например, предположим, что монитор поддерживает только черный и белый цвета, а нам нужен серый. Чередование пикселей черного и белого может повлиять на желаемый оттенок серого. Больше черных пикселей для темно-серого, больше белых пикселей для более светлых оттенков серого. Если смотреть с достаточного расстояния, следующий рисунок будет казаться серым.

Вернуться к содержанию.
Разрешение и место для хранения
Вернемся к идее хранилища, необходимого для изображения. Старые компьютерные мониторы допускают всего 256 цветов в палитре. Предположим, у вас монитор с разрешением 640 на 480 пикселей и 256 цветами на пиксель. Отсюда следует 640 * 480 = 307 200 пикселей. Напомним, что для 256 значений требуется 8 бит памяти компьютера. Следовательно (307 200 пикселей) * (8 бит на пиксель) = 2 457 600 бит памяти. Обычный метод продажи компьютерной памяти — 8-битные группы, называемые байтами. Следовательно, для изображения потребуется (2 457 600 бит) / (8 бит на байт) = 307 200 байт компьютерной памяти. Если предположить, что 24 бита на пиксель (часто называемый истинным цветом), то для разрешения 800 на 600 потребуется 24 * 800 * 600 = 11 520 000 бит памяти или 11 520 000 / 8 = 1 440 000 байт памяти. Изображение, отображаемое или сохраняемое с разрешением 1024 на 768 и 24-битным цветом, потребует 2 359 296 байт памяти. Поскольку для отображения изображения требуется дополнительная информация, компьютерным графическим картам обычно требуется минимум 4 мегабайта памяти для получения удовлетворительных изображений. Высокопроизводительным системам может потребоваться 8 или даже 16 мегабайт памяти на изображение. Чем выше качество желаемого изображения, тем больше требуется места для хранения и, следовательно, выше стоимость записи изображения. В большинстве цифровых камер низкой и средней стоимости используется разрешение 640 * 480 = 307 200 пикселей или 800 * 600 = 480 000 пикселей с 24 битами на пиксель для записи цвета. Сканеры и принтеры обычно оцениваются по количеству точек (пикселей) на дюйм, которое они поддерживают.

Обратите внимание, что разрешение экрана (количество пикселей и цветов) определяет объем памяти, необходимый для "снимка экрана" из Интернета. Окончательный размер документа, содержащего изображения из Интернета, цифровых камер и сканеров, зависит от того, на какой скорости был снят или создан материал. Эти же аргументы применимы к определению требований к памяти для цифровых камер. Что происходит, когда изображение, первоначально снятое с разрешением 800 на 600 и 32 766 цветов, отображается на экране с разрешением 1024 на 768 и 16 777 216 цветов. Компьютер расширяет изображение, чтобы заполнить необходимое пространство. Как правило, более крупное изображение несколько теряет в качестве. Аналогичный эффект наблюдается при увеличении фотографии за пределами качества негатива.
Вернуться к содержанию.
Уменьшение глубины
-
Многие художественные программы позволяют пользователю уменьшить «глубину» изображения. В качестве типичного примера изображение из 16 777 216 цветов может быть уменьшено до изображения, содержащего 32 766 цветов или 256 цветов. В зависимости от изображения пользователь может не заметить разницу в качестве изображения. Это часто делается для уменьшения размера хранимого изображения или уменьшения объема информации, которая должна быть передана в удаленное место по средству связи. Обратите внимание, что после уменьшения и сохранения качество исходного изображения невозможно восстановить. В качестве примера рассмотрим две версии приведенной выше картинки. Картинка слева содержит 128 246 уникальных цветов. Изображение справа было получено путем сохранения исходного изображения с использованием палитры из 256 цветов. Программное обеспечение пыталось сопоставить каждый пиксель в палитре из 128 246 цветов с ближайшим соответствием в палитре из 256 цветов. Потеря цвета (детали) наиболее заметна на лепестках в правом нижнем углу изображения.При необходимости измените размер изображений, чтобы они располагались рядом в окне просмотра для сравнения.
Вернуться к содержанию.
Стандартные отраслевые форматы хранения
Файлы изображений хранятся на компьютерах в универсальных форматах, поэтому их можно передавать и интерпретировать различными типами аппаратного и программного обеспечения. Наиболее популярными форматами, используемыми в настоящее время в Интернете, являются формат обмена графикой (GIF или .jpg), Объединенная группа экспертов по фотографии (JPEG или .jpg) и формат файла изображения с тегами (TIFF или .tif). JPEG и GIF особенно популярны в Интернете. Как в формате GIF, так и в формате JPEG существует несколько вариантов хранения информации. Также существуют специальные форматы поставщиков, такие как BMP (битовое отображение, .bmp) на компьютерах с Microsoft Windows и PICT (.pic) на компьютерах Apple. Целью большинства форматов записи является уменьшение размера сохраняемого изображения. Например, многие программные пакеты, работающие под Microsoft Windows, поддерживают RLE (кодирование длин серий). В качестве конкретного примера (если вы позволите несколько вольностей с техническими деталями), строка или 20 красных пикселей в строке могут храниться как 20R, а не как RRRRRRRRRRRRRRRRRRRRRR. Чем больше избыточности в изображении, тем больше места можно сэкономить. Многие методы кодирования зависят от числовых процедур для уменьшения памяти. Хотя эти числовые процедуры намного эффективнее уменьшают размер хранимого изображения, они часто делают это за счет точности. Как показано на приведенных выше изображениях, потерю точности может быть трудно предсказать. Если бит время от времени теряется, человеческий глаз может не заметить эту потерю. Обратите внимание, что уменьшение количества цветов в изображении для экономии места не всегда может помочь. Изображение с количеством цветов менее или равным 256 можно сохранить в формате BMP, используя только 8 бит на пиксель. Если 0 < количество цветов < 16 777 216, BMP использует 24 бита на пиксель. Однако JPEG имеет тенденцию использовать 24 бита на пиксель независимо от количества сохраненных цветов. Однако вам может потребоваться меньше места для хранения, поскольку алгоритм сжатия работает с уменьшенным количеством цветов.

Доступный объем ОЗУ для кадрового буфера может ограничивать разрешение, которое можно получить на цветных или полутоновых дисплеях. Вероятно, это не влияет на дисплеи, которые имеют только два цвета: белый и черный, без промежуточных оттенков серого.

Для 256-цветных дисплеев требуется байт видеопамяти для отображения каждой видимой точки. Этот байт содержит информацию, которая определяет, какое сочетание красного, зеленого и синего генерируется для его точки. Чтобы получить требуемый объем памяти, умножьте количество видимых точек в строке на количество видимых строк. Для дисплея с разрешением 1024x768 это будет 1024x768 = 786432, то есть количество видимых точек на дисплее. Это также, по одному байту на точку, количество байтов видеопамяти, которое потребуется на вашей плате адаптера.

Таким образом, требования к памяти обычно составляют (HR * VR)/1024 Кбайт видеопамяти, округленное в большую сторону (в данном примере это будет 768 Кбайт). Если у вас больше памяти, чем требуется, у вас будет дополнительная память для панорамирования виртуального экрана.

Однако, если на вашей видеокарте установлено только 512 КБ, вы не сможете использовать это разрешение. Даже если у вас хороший монитор, без достаточного количества видеопамяти вы не сможете воспользоваться его потенциалом. С другой стороны, если ваш SVGA имеет один мегабайт, но ваш монитор может отображать не более 800x600, то высокое разрешение в любом случае вам недоступно (возможное решение проблемы см. в разделе Использование чересстрочных режимов).

Не беспокойтесь, если у вас больше памяти, чем требуется; X-сервер будет использовать его, позволяя вам прокручивать область просмотра (см. документацию файла Xconfig о параметре размера виртуального экрана). Помните также, что на карте с 512 КБ памяти на самом деле установлено не 512 000 байт, а 512 x 1024 = 524 288 байт.

Если вы используете X/Inside с картой S3 и готовы работать с 16 цветами (4 бита на пиксель), вы можете установить глубину 4 в Xconfig и фактически удвоить разрешение, которое может поддерживать ваша карта. Карты S3, например, обычно имеют разрешение 1024x768x256. Вы можете сделать их 1280 x 1024 x 16 с глубиной 4.

Bpp или бит на пиксель обозначает количество бит на пиксель. Количество различных цветов в изображении зависит от глубины цвета или количества битов на пиксель.

Кратко о математике:

Это похоже на игру с двоичными битами.

Сколько чисел может быть представлено одним битом.

Сколько двухбитовых комбинаций можно составить.

Если мы придумаем формулу для расчета общего количества комбинаций, которые можно составить из бит, она будет такой.

бит на пиксель

Где bpp обозначает количество бит на пиксель. Подставьте 1 в формулу, получите 2, подставьте 2 в формулу, получите 4. Она растет экспоненциально.

Количество разных цветов:

Теперь, как мы сказали в начале, количество различных цветов зависит от количества битов на пиксель.

Таблица некоторых битов и их цвета приведены ниже.

В этой таблице показаны различные биты на пиксель и количество цвета, которое они содержат.

Оттенки

Вы можете легко заметить закономерность экспоненциального роста. Знаменитое изображение в оттенках серого имеет 8 бит на пиксель , что означает, что оно содержит 256 различных цветов или 256 оттенков.

Оттенки могут быть представлены как:

shades

Цветные изображения обычно имеют формат 24 бит/пиксель или 16 бит/пиксель.

Мы узнаем больше о других цветовых форматах и ​​типах изображений в руководстве по типам изображений.

Цветовые значения:

Ранее мы видели в учебнике по понятию пикселя, что значение 0 пикселей обозначает черный цвет.

Черный цвет:

Помните, что значение 0 пикселей всегда соответствует черному цвету. Но не существует фиксированного значения, обозначающего белый цвет.

Белый цвет:

Значение, обозначающее белый цвет, можно рассчитать следующим образом:

white_color

В случае 1 бит/пиксель 0 – черный, 1 – белый.

В случае 8 бит/с 0 означает черный, а 255 – белый.

Серый цвет:

Когда вы вычисляете значение черного и белого цвета, вы можете вычислить значение пикселя серого цвета.

Серый цвет на самом деле является средней точкой черного и белого. При этом

В случае 8 бит на пиксель значение пикселя, обозначающее серый цвет, составляет 127 или 128 бит на пиксель (если считать от 1, а не от 0).

Требования к хранению изображений

После обсуждения количества бит на пиксель у нас есть все, что нужно для расчета размера изображения.

Размер изображения

Размер изображения зависит от трех факторов.

  • Количество строк
  • Количество столбцов
  • Количество бит на пиксель

Формула расчета размера приведена ниже.

Размер изображения = количество строк * столбцов * бит/пиксель

Это означает, что если у вас есть изображение, скажем, вот это:

einstein

Предположим, что в нем 1024 строки и 1024 столбца. И поскольку это изображение в градациях серого, оно имеет 256 различных оттенков серого или количество битов на пиксель. Затем подставляя эти значения в формулу, получаем

Размер изображения = количество строк * столбцов * бит/пиксель

Но поскольку это не стандартный ответ, который мы распознаем, мы преобразуем его в наш формат.

Преобразование в байты = 8388608 / 8 = 1048576 байт.

Перевод в килобайты = 1048576 / 1024 = 1024 КБ.

Перевод в мегабайты = 1024/1024 = 1 Мб.

Так рассчитывается размер изображения и сохраняется. Теперь в формуле, если вам задан размер изображения и количество бит на пиксель, вы также можете вычислить строки и столбцы изображения, если изображение квадратное (одинаковые строки и один и тот же столбец).

Между количеством цветов, придаваемых растровой точке, и количеством информации, которое необходимо выделить для хранения цвета точки, существует зависимость, определяемая соотношением (формула Р. Хартли):


где

I- количество информации

N количество цветов, присвоенных точке.

Таким образом, если для точки изображения задано количество цветов N= 256, то количество информации, необходимой для ее хранения (глубина цвета) в соответствии с формулой Р. Хартли, будет равно до I= 8 бит.

Компьютеры используют различные режимы графического отображения для отображения графической информации. Здесь следует отметить, что кроме графического режима монитора существует еще и текстовый режим, при котором экран монитора условно разбит на 25 строк по 80 символов в строке. Эти графические режимы характеризуются разрешением экрана монитора и качеством цвета (глубиной цвета).

Для реализации каждого из графических режимов экрана монитора необходим определенный информационный объем видеопамяти компьютера (V), который определяется из соотношения


где

ТО- количество точек изображения на экране монитора (К=А Б)

НО- количество горизонтальных точек на экране монитора

IN- количество точек по вертикали на экране монитора

I– количество информации (глубина цвета), т.е. количество бит на пиксель.


Так, если экран монитора имеет разрешение 1024 на 768 пикселей и палитру, состоящую из 65536 цветов, то

глубина цвета будет равна I = log 2 65 538 = 16 бит,

количество пикселей изображения будет равно K = 1024 x 768 = 786432

Требуемый информационный объем видеопамяти в соответствии будет равен V = 786432 16 бит = 12582912 бит = 1572864 байт = 1536 КБ = 1,5 МБ.

Файлы, созданные на основе растровой графики, предполагают хранение данных о каждой отдельной точке изображения. Отображение растровой графики не требует сложных математических расчетов, достаточно получить данные о каждой точке изображения (ее координаты и цвет) и отобразить их на экране монитора компьютера.

Выбирая цветы, каждый человек задумывается о том, сколько цветов должно быть в букете. Ведь кроме вида и оттенка растений большую роль в букете играет их количество. С помощью специальных разработок ученым удалось выяснить, что уже в V-VI веках до нашей эры наблюдалась определенная числовая символика. Этот факт говорит о том, что цифры имеют давно проверенное значение, поэтому к количеству цветов для подарка стоит отнестись серьезно.

Четные и нечетные числа

Согласно древним славянским традициям, четное количество цветов в букете имеет траурное значение и заряжает букет негативной энергией.

Поэтому на похороны, на могилы или памятники везут парную сумму. А вот жители восточных, европейских стран и США имеют на этот счет совершенно иную точку зрения. Их четное количество является символом удачи, счастья и любви.

Самое счастливое число в немецком букете – восемь, несмотря на то, что оно четное.

В США чаще всего дарят вместе 12 цветов. Жители Токио спокойно отреагируют, если вы подарите им по 2 цветка, главное не 4 - эта цифра считается для них символом смерти.

У японцев вообще свой язык растений, и каждое число имеет свое значение. Например, одна роза — это знак внимания, три — уважения, пять — любви, семь — страсти и обожания, девять — преклонения. Японцы преподносят букет из 9 цветов своим кумирам, а из 7 – любимым женщинам. В нашей стране также можно дарить четное количество растений, если их больше 15 в одном наборе.

Язык цветов

Мало кто знает, что язык цветов определяет количество бутонов в букете. Этот язык нужно знать и учитывать тому, кто делает подарок, чтобы не жалеть о своих поступках в будущем. Неожиданно для получателя имеет значение количество цветов в букете.

О чем говорят цифры

Исключением из правила, запрещающего дарить четное количество цветов, являются розы, их может быть даже два.

Для этих красивых растений существует отдельный язык, определяющий значение каждого из их чисел:

Как подарить девушке розу

Конечно, каждая женщина мечтает хотя бы раз в жизни получить от любимого большое количество роз, которое будет даже сложно сосчитать.

Но не всегда композиция из сотен элитных растений важнее в плане любви к избраннику, чем одна прекрасная красная роза, особенно если ее правильно преподать.

Не стоит заворачивать цветок в обертку, а также добавлять к нему лишние ветки и растения, это только удешевит его внешний вид.

Намного лучше будет смотреться роза, украшенная бархатной или атласной лентой. Иногда можно упаковать в прозрачную обертку, но только без лишнего блеска. То же самое можно сказать и о букете из трех бутонов. Если в наборе более 7 цветов, то их необходимо упаковать и перевязать ленточками, чтобы букет смотрелся красиво и не осыпался.

При заказе печати на упаковках рекомендуется наносить простые изображения для исполнения не более чем в один-три цвета.Стоит отметить, что при создании макета хорошим дизайнером это никак не отразится на качестве и восприятии рекламной информации, предоставляемой потребителем, а кроме того, уменьшит стоимость и сроки изготовления заказа. Также следует учитывать возможность комбинирования цветов в технологическом плане и подбирать соответствующее оборудование. Ведь не все наносимые изображения геометрически независимы друг от друга, зачастую некоторые цвета жестко связаны между собой и их нужно стыковать.

Если вам все же нужен рисунок с большим количеством разных цветов, то лучше использовать специальное оборудование, позволяющее выполнять полноцветную печать на пакетах. Принцип таких машин – наличие УФ-сушки, так как для полноцветной печати можно использовать только УФ-отверждаемые краски. Конечно, эта технология подразумевает не только высокую стоимость нанесения полноцветных изображений на упаковку, но и печать более крупных точек, поэтому не стоит ожидать такого качества картинки, как на бумаге.

Зайдите практически на любой форум фотографии, и вы обязательно наткнетесь на обсуждение преимуществ файлов RAW и JPEG. Одной из причин, по которой некоторые фотографы предпочитают формат RAW, является большая битовая глубина (глубина цвета)*, содержащаяся в файле. Это позволяет делать фотографии более высокого технического качества, чем то, что вы можете получить из файла JPEG.

*Битглубина(разрядность), или цветглубина(глубина цвета, по-русски это определение чаще используется) — количество битов, используемых для представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается в битах на пиксель (bpp). Википедия

Что такое глубина цвета?

Компьютеры (и устройства, управляемые встроенными компьютерами, такие как цифровые зеркальные камеры) используют двоичную систему. Двоичная нумерация состоит из двух цифр — 1 и 0 (в отличие от десятичной системы, включающей 10 цифр). Одна цифра в двоичной системе называется «бит» (англ. «бит», сокращение от «двоичная цифра», «двоичная цифра»).


Максимально возможное восьмибитное число – 1 111 1111, или 255 в десятичном формате. Это важное число для фотографов, поскольку оно присутствует во многих программах обработки изображений, а также в старых дисплеях.

Цифровая съемка

Каждый из миллионов пикселей на цифровой фотографии соответствует элементу (также называемому "пикселем") на датчике (массиве датчиков) камеры. Эти элементы при воздействии света генерируют небольшой электрический ток, который измеряется камерой и записывается в файл JPEG или RAW.

Файлы JPEG

Файлы JPEG записывают информацию о цвете и яркости для каждого пикселя в виде трех восьмизначных чисел, по одному для красного, зеленого и синего каналов (это те же самые цветовые каналы, которые вы видите при построении цветовой гистограммы в Photoshop). или на камеру).


Этот градиент был сохранен в 24-битном файле (8 бит на канал), что достаточно для передачи мягких цветовых градаций.


Этот градиент был сохранен как 16-битный файл. Как видите, 16 бит недостаточно для передачи мягкого градиента.

RAW-файлы

Файлы RAW назначают больше битов каждому пикселю (большинство камер имеют 12- или 14-битные процессоры). Больше битов означает больше чисел и, следовательно, больше тонов на канал.

Это не означает большее количество цветов — файлы JPEG уже могут записывать больше цветов, чем может воспринять человеческий глаз. Но каждый цвет сохраняется с гораздо более тонкой градацией тонов. В этом случае говорят, что изображение имеет большую глубину цвета. В таблице ниже показано, как битовая глубина соотносится с количеством оттенков.


Обработка внутри камеры

постобработка

Файл RAW отличается от JPEG тем, что содержит все данные, полученные датчиком камеры в течение периода экспозиции. Когда вы обрабатываете файл RAW с помощью программного обеспечения для преобразования RAW, программное обеспечение выполняет преобразования, аналогичные действиям внутреннего процессора камеры при съемке в формате JPEG. Разница в том, что вы задаете параметры внутри используемой вами программы, а те, что заданы в меню камеры, игнорируются.

Преимущество дополнительной разрядности файла RAW становится очевидным при постобработке. Файл JPEG стоит использовать, если вы не собираетесь выполнять какую-либо постобработку, а вам нужно просто установить экспозицию и все остальные настройки во время съемки.

Однако на самом деле большинству из нас хочется внести хотя бы несколько корректировок, даже если это просто яркость и контрастность. И это как раз тот момент, когда файлы JPEG начинают уступать.Благодаря меньшему количеству информации на пиксель при настройке яркости, контрастности или цветового баланса оттенки можно визуально разделить.

Результат наиболее заметен в областях с плавными и длинными переходами оттенков, например на голубом небе. Вместо мягкого градиента от светлого к темному вы увидите наслоение цветных полос. Этот эффект также известен как постеризация. Чем больше вы настраиваете, тем больше это проявляется на изображении.

С файлом RAW вы можете значительно изменить цветовой оттенок, яркость и контрастность, прежде чем заметите ухудшение качества изображения. Он также позволяет выполнять некоторые функции конвертера RAW, такие как настройка баланса белого и восстановление «переэкспонированных» областей (восстановление засветки).


Эта фотография была взята из файла JPEG. Даже при таком размере видны полосы на небе в результате постобработки.


При ближайшем рассмотрении на небе виден эффект постеризации. Работа с 16-битным файлом TIFF может устранить или, по крайней мере, свести к минимуму эффект полос.

16-битные файлы TIFF

Однако, если вы планируете выполнять постобработку в Photoshop, рекомендуется сохранить изображение как 16-битный файл. В этом случае изображение, полученное с 12- или 14-битного сенсора, будет «растянуто», чтобы заполнить 16-битный файл. После этого вы можете поработать над ним в Photoshop, зная, что дополнительная глубина цвета поможет вам добиться максимального качества.


Это изображение, которое я сделал с настройкой RAW+JPEG на камеру EOS 350D. Камера сохранила две версии файла: файл JPEG, обработанный процессором камеры, и файл RAW, содержащий всю информацию, записанную 12-битным датчиком камеры.


Здесь вы можете увидеть сравнение правого верхнего угла обработанного файла JPEG и файла RAW. Оба файла были созданы камерой с одинаковыми настройками экспозиции, и единственная разница между ними — глубина цвета. Мне удалось «вытянуть» в JPEG «переэкспонированные» детали, которые не различимы в файле RAW. Если бы я хотел продолжить работу с этим изображением в Photoshop, я мог бы сохранить его как 16-битный файл TIFF, чтобы обеспечить наилучшее качество изображения во время обработки.

Почему фотографы используют JPEG?

Тот факт, что не все профессиональные фотографы постоянно используют формат RAW, ничего не значит. Например, свадебные и спортивные фотографы часто работают с форматом JPEG.

Для свадебных фотографов, которые могут сделать тысячи кадров на свадьбе, это экономит время на постобработке.

Спортивные фотографы используют файлы JPEG, чтобы отправлять фотографии в свои фоторедакторы во время мероприятия. В обоих случаях скорость, эффективность и меньший размер файла формата JPEG делают его логичным для использования.

Глубина цвета на экранах компьютеров

Битовая глубина также относится к глубине цвета, которую способны отображать компьютерные мониторы. Читателю, использующему современные дисплеи, может быть трудно поверить в это, но компьютеры, которыми я пользовался в школе, могли воспроизводить только 2 цвета — белый и черный. «Обязательный» компьютер того времени — Commodore 64, способный воспроизводить целых 16 цветов. По информации из Википедии, продано более 12 единиц этого компьютера.



Компьютер Commodore 64. Фото Билла Бертрама

Файлы HDR

Многие из вас знают, что изображения с расширенным динамическим диапазоном (HDR) создаются путем объединения нескольких версий одного и того же изображения, снятых с разными настройками экспозиции. Но знаете ли вы, что программное обеспечение генерирует 32-битное изображение с более чем 4 миллиардами тональных значений на канал на пиксель — всего лишь скачок по сравнению с 256 тонами в файле JPEG.

Файлы True HDR не могут правильно отображаться на мониторе компьютера или на печатной странице. Вместо этого они обрезаются до 8- или 16-битных файлов с помощью процесса, называемого тональной компрессией, который сохраняет характеристики исходного изображения с высоким динамическим диапазоном, но позволяет воспроизводить его на устройствах с узким динамическим диапазоном.

Заключение

Пиксели и биты — это основные элементы для создания цифрового изображения. Если вы хотите получить максимально возможное качество изображения с камеры, вам необходимо понимать концепцию глубины цвета и причины, по которым формат RAW обеспечивает наилучшее качество изображения.

Решение задач по кодированию графической информации.

Растровая графика.

Векторная графика.

Введение

Данное электронное пособие содержит группу заданий по теме «Кодирование графической информации». Коллекция заданий разделена на типы заданий по заданной теме. Каждый вид заданий рассматривается с учетом дифференцированного подхода, т. е. рассматриваются задания минимального уровня (оценка «3»), общего уровня (оценка «4»), продвинутого уровня (оценка «5»). Данные задания взяты из различных учебников (список прилагается). Подробно рассматриваются решения всех задач, даются методические рекомендации по каждому типу задач, дается краткий теоретический материал. Для удобства руководство содержит ссылки на закладки.

Растровая графика.

<р>1. Определение объема видеопамяти.

<р>2. Определение разрешения экрана и установка графического режима.

1. Определение объема видеопамяти

В задачах этого типа используются следующие понятия:

· объем видеопамяти

· графический режим,

· глубина цвета,

· разрешение экрана,

Во всех подобных задачах нужно найти ту или иную величину.

Видеопамять - это специальная оперативная память, в которой формируется графическое изображение. Другими словами, чтобы картинка попала на экран монитора, ее надо где-то хранить. Вот для чего нужна видеопамять. Чаще всего его значение составляет от 512 Кб до 4 Мб для лучших ПК с 16,7 млн ​​цветов.

Объем видеопамяти рассчитывается по формуле: V=I*X*Y, где I — глубина цвета одной точки, x,Y — размеры экрана по горизонтали и вертикали (произведение x и y — разрешение экрана) .

Экран дисплея может работать в двух основных режимах: текстовом и графическом.

В графическом режиме экран делится на отдельные светящиеся точки, количество которых зависит от типа дисплея, например 640 по горизонтали и 480 по вертикали. Светящиеся точки на экране обычно называют пикселями, их цвет и яркость могут различаться. Именно в графическом режиме все сложные графические изображения, созданные компьютером, появляются на экране компьютера. специальные программы, управляющие настройками каждого пикселя на экране. Графические режимы характеризуются такими показателями, как:

- разрешение (количество точек, с которым изображение воспроизводится на экране) - в настоящее время типовые уровни разрешения составляют 800*600 точек или 1024*768 точек. Однако для мониторов с большой диагональю можно использовать разрешение 1152*864 пикселей.

- глубина цвета (количество бит, используемое для кодирования цвета точки), например, 8, 16, 24, 32 бита. Каждый цвет можно рассматривать как возможное состояние точки, Тогда количество отображаемых на экране монитора цветов можно рассчитать по формуле K=2 I, где K- количество цветов I– глубина цвета или разрядность.

Кроме вышеперечисленных знаний, учащийся должен иметь представление о палитре:

- палитра (количество цветов, которые используются для воспроизведения изображения), например 4 цвета, 16 цветов, 256 цветов, 256 оттенков серого, 216 цветов в режиме High color или 224, 232 цвета в режиме True цветовой режим.

Учащийся также должен знать взаимосвязь между единицами информации, уметь переводить из мелких единиц в более крупные, Кбайты и Мбайты, пользоваться обычным калькулятором и Wise Calculator.

Уровень "3"

1. Определить необходимый объем видеопамяти для разных графических режимов экрана монитора, если известна глубина цвета на одну точку. (2.76)

Глубина цвета (бит на точку)

<р>1. Всего точек на экране (разрешение): 640 * 480 = 307200
2. Требуемый объем видеопамяти V= 4 бит * 307200 = 1228800 бит = 153600 байт = 150 Кб.
3. Аналогично рассчитывается необходимое количество видеопамяти для других графических режимов. При расчетах учащийся использует калькулятор для экономии времени.

Читайте также:

Бит на пиксель Количество цветов
1 бит на пиксель 2 цвета
2 бита на пиксель 4 цвета
3 бита на пиксель 8 цветов
4 бита на пиксель 16 цветов
5 бит на пиксель 32 цвета
6 бит на пиксель 64 цвета
7 бит на пиксель 128 цветов
8 бит на пиксель 256 цветов
10 бит на пиксель 1024 цвета
16 бит на пиксель 65536 цветов
24 бит на пиксель 16777216 цветов (16,7 миллиона цветов)
32 бита на пиксель 4294967296 цветов (4294 миллиона цветов)