Внешняя память предназначена для длительного хранения информации только при работающем компьютере

Обновлено: 21.11.2024

Вывод: рабочая память человека содержит информацию, относящуюся к текущей задаче; когда задачи слишком сложны, пользователи должны иметь возможность переложить часть нагрузки на рабочую память на функции пользовательского интерфейса, которые могут служить внешней памятью.

Ралука Будью

Темы:

Поделиться этой статьей:

Когда люди используют веб-сайты или другие пользовательские интерфейсы, частая причина трудностей заключается в том, что они забывают информацию из предыдущего шага, даже если она потребуется на более позднем этапе для выполнения их задачи. Это не потому, что пользователи особенно забывчивы. И не потому, что они не утруждают себя вниманием — хотя никогда не совершайте ошибку, предполагая, что выяснить, как использовать ваш сайт, — это самая важная вещь в мире. Нет, причина, по которой люди забывают информацию посреди задачи, заключается в том, что пользовательский интерфейс требует от них держать в рабочей памяти больше, чем может вместить их мозг.

Предположим, кто-то попросил вас сложить в уме числа 353 и 489. Как бы вы это сделали? Некоторые могут попытаться мысленно выстроить числа, а затем добавить соответствующие цифры для единиц, десятков и сотен соответственно. Другие могут преобразовать одно из чисел в «простое» число (например, 300 или 500), а затем добавить его к другому числу (например, прибавив 11 ко второму числу и вычитая 11 из первого, чтобы получить 342+500). ).

Каким бы ни был метод, есть вероятность, что задача будет сложной. Чтобы решить ее, мы должны иметь много информации: не только точные числа, которые нужно сложить, но и промежуточные продукты сложения. Эта задача сложна, потому что она нагружает нашу рабочую память.

Определение. Рабочая память человека может быть представлена ​​как буфер или блокнот, в котором мозг хранит информацию, относящуюся к текущей задаче.

Емкость буфера рабочей памяти ограничена — представьте его как коробку для яиц с небольшим количеством слотов. Если задача требует хранения слишком большого количества информации в рабочей памяти, нам нужно освободить некоторые из занятых слотов, чтобы освободить место для этой информации. То, что удалено из рабочей памяти, на самом деле все еще может быть необходимо для завершения задачи, и в конечном итоге мы можем усерднее работать над восстановлением этих данных; в результате нам может потребоваться больше времени, чтобы выполнить задачу или сделать ошибки. В нашем примере сложения мы можем в конечном итоге выбросить перенос или цифру из одного из исходных чисел и получить неправильный ответ.

Концепция рабочей памяти была впервые проиллюстрирована в знаменитой серии экспериментов, проведенных психологами Аланом Баддели и Грэмом Хитчем из Стерлингского университета в Шотландии. В этих экспериментах участникам давали от 1 до 6 цифр, чтобы они запомнили их при выполнении другого задания, где им нужно было определить, соответствует ли предложение порядку предъявления двух букв. Чем больше цифр людям приходилось хранить в памяти, тем хуже было выполнение второго задания. Эксперимент показал, что часть рабочей памяти участников была занята хранением цифр, поэтому у них было меньше слотов, доступных для второго задания. (Этот процесс примерно похож на трэшинг в компьютерных науках — явление, при котором у процессора недостаточно внутренней памяти для хранения всей информации для задачи, и в итоге часть ее сбрасывается на диск, а другая загружается с диска. )

В экспериментах Баддели и Хитча люди должны были хранить некоторые цифры в своей рабочей памяти и запоминать их после выполнения второго задания. Когда количество цифр, которые им нужно было запомнить, было небольшим (1–2), их успеваемость во втором задании не страдала. Но когда им приходилось запоминать больше цифр, их производительность действительно ухудшалась, потому что у них было меньше оперативной памяти, доступной для этой задачи.

Связь с кратковременной памятью

Рабочая память и кратковременная память связаны между собой, а иногда даже в психологии они взаимозаменяемы. Однако технически они совершенно разные. Концепция рабочей памяти ориентирована на задачи: ее можно рассматривать как «интерфейс» между различными процессами (например, восприятием, вниманием, памятью), подчиненными более крупной задаче.

Напротив, кратковременная память просто представляет собой мозговой процесс, который позволяет нам хранить информацию (например, слова, предложения, понятия) в течение короткого промежутка времени. Наиболее известно, что это связано с разбиением на фрагменты и магическим числом Миллера 7, которое представляет приблизительную емкость кратковременной памяти, основанное на наблюдении, сделанном Джорджем Миллером еще в 1958 году, что мы можем запомнить около 7 «кусков» информации за короткое время. времени.

Рабочая память и взаимодействие с пользователем

В нашей области распространенной концепцией, хорошо связанной с рабочей памятью, является концепция когнитивной нагрузки. Если задача сопряжена с высокой когнитивной нагрузкой, это обычно означает, что она сильно нагружает рабочую память. Задачи, которые нагружают нашу рабочую память, обычно воспринимаются как сложные; поэтому, чтобы сделать работу приятной и удобной, дизайнеры должны убедиться, что рабочая память пользователя не будет перегружена.

Но как мы можем узнать объем оперативной памяти наших пользователей? Хотя рабочая память имеет ограниченный объем, ее точный объем будет варьироваться от человека к человеку. Образование и IQ обычно положительно коррелируют с объемом рабочей памяти, тогда как возраст влияет на него отрицательно. Если мы нацелимся на специализированную аудиторию (например, на экспертов), мы сможем получить довольно хорошее представление о возможностях рабочей памяти ее членов. Но для широкой аудитории размер рабочей памяти будет довольно разным.

Хотя объем рабочей памяти зависит от каждого человека, вполне вероятно, что многие члены вашей проектной группы обладают значительно большим объемом памяти, чем представители вашей целевой аудитории. Наверняка у многих разработчиков большая рабочая память из-за самоотбора: программирование настолько сложно, что люди, скорее всего, преуспеют в нем, если смогут удерживать много материала в своей рабочей памяти во время кодирования. В результате ваши коллеги могут подумать, что определенный поток задач прост — потому что он не перегружает их собственную рабочую память — но у большинства реальных пользователей возникнут большие трудности, потому что у них заканчивается рабочая память при попытке выполнить задачу. Как всегда, вы не пользователь.

Хорошее взаимодействие с пользователем полезно для всех, а не только для тех, у кого большой объем оперативной памяти. Таким образом, общая хорошая практика проектирования состоит в том, чтобы ограничить нагрузку на рабочую память пользователей. Другими словами, убедитесь, что пользователи могут легко получить доступ ко всей информации, необходимой им для задачи, без необходимости фиксации ее в рабочей памяти.

Внешняя память

Легко сказать: "ограничьте нагрузку на рабочую память", но некоторые задачи, естественно, сложнее других. Как мы можем помочь пользователям обойти ограничения рабочей памяти? В нашем исходном примере сложения мы не можем изменить задачу; дополнение, что это такое. Но мы можем упростить задачу — предоставив ручку и бумагу, чтобы люди могли записывать числа и промежуточные продукты в задаче, не сохраняя их в рабочей памяти. Бумага действует как физический блокнот, «фальшивая» рабочая память.

Определение. Под внешней памятью понимается любой инструмент или функция пользовательского интерфейса, которые позволяют пользователям явно сохранять и получать доступ к информации, необходимой во время выполнения задачи.

То же самое с веб-задачами. Дополните оперативную память формой внешней памяти — виртуальным блокнотом, где пользователи могут хранить всю необходимую им информацию, не фиксируя ее во внутренней памяти.

Примером задачи, требующей больших затрат оперативной памяти, является чтение сложного отрывка на мобильном телефоне. Наши исследования показывают, что для достижения одинакового уровня понимания на маленьком экране и на большом экране пользователи должны проводить больше времени на мобильных устройствах — вероятно, из-за более высоких требований к оперативной памяти. Экран служит естественной внешней памятью — если люди что-то забыли, они могли бросить взгляд и вернуться к концепции из предыдущего абзаца. Но на меньшем экране информация из предыдущего абзаца уже не видна (то есть размер блокнота внешней памяти меньше), поэтому приходится тратить время на ее восстановление.

Типичным примером веб-задачи, связанной с большой нагрузкой на рабочую память, является сравнение элементов: пользователь должен взвесить все за и против нескольких вариантов и выбрать лучший. Сравнивая отели, обувь или страховые планы, сравнение включает в себя запоминание доступных вариантов и определение оптимальной комбинации вариантов. Такие инструменты, как сравнительные таблицы, представляют собой форму внешней памяти: они позволяют пользователям выбирать набор интересующих элементов и явно сравнивать их плюсы и минусы, выстроенные друг в друга, в удобной для просмотра таблице.

Иногда пользователи создают собственные инструменты внешней памяти. Например, мы можем использовать электронную таблицу, файл или веб-заметку, чтобы отслеживать интересные летние лагеря для наших детей, места, которые можно увидеть во время отпуска, или статьи, которые нужно прочитать. Совершая покупки в Интернете, многие пользователи сохраняют кандидатов для целевого товара в корзине, а затем, в конце концов, решают, какой из них лучше. Миллениалы занимаются парковкой страниц — открывают интересные объекты в разных вкладках, сохраняют для просмотра в будущем, не отрываясь от задачи выбора. Все эти действия создают некоторую форму внешней памяти и помогают пользователям справляться с нагрузками, связанными с задачами, требующими большого объема рабочей памяти.

Заключение

Разные задачи имеют разные требования к рабочей памяти.Дизайнеры должны понимать, какую информацию пользователи должны будут хранить в своей рабочей памяти, когда они пытаются достичь своих целей на веб-сайте, и предоставлять функции пользовательского интерфейса, которые действуют как внешняя память, чтобы помочь им разгрузить это бремя и выполнить задачу быстрее.

Узнайте больше о рабочей памяти и внешней памяти на наших курсах по психологии и взаимодействию человека с компьютером для дизайнеров.

Ссылка

Баддели, А.Д., и Хитч, Г. (1974). Рабочая память. В Г.Х. Бауэр (ред.), Психология обучения и мотивации: достижения в области исследований и теории (том 8, стр. 47–89). Нью-Йорк: Академическая пресса.

Об авторе

Подпишитесь на нашу электронную рассылку Alertbox:

Последние статьи об удобстве использования интерфейсов, дизайне веб-сайтов и исследованиях UX от Nielsen Norman Group.

Основная цель памяти, будь то память человека или машины, — хранить информацию в течение определенного периода времени. Однако есть одна особенность человеческой памяти, по сравнению с машинной памятью, — это способность человеческой памяти забывать. Это может показаться недостатком для нас, людей, но мы должны учитывать тот факт, что существует очень мало вещей, которые мы можем запомнить. Компьютеры не забывают и не запоминают вещи так, как это делаем мы, люди. Они хранят информацию в виде двоичного кода. Это означает, что они либо что-то знают, либо нет (исключая отказ оборудования или повреждение данных). Теперь давайте посмотрим, как компьютер хранит информацию в различных типах памяти.

(Фото предоставлено Pixabay)

Рекомендуемое видео для вас:

Поведение памяти при отключении питания

Фундаментальное сходство между памятью человека и компьютера заключается в том, что у обоих есть два типа памяти. У человека различают кратковременную память и долговременную память. Краткосрочные воспоминания — это действия, которые вы недавно видели и которые требуют обработки. Долговременная память состоит из фактов, которые мы узнали, событий, которые мы пережили, и вещей, которые нам нужно помнить в течение длительного периода времени. Теперь, когда дело доходит до памяти компьютера, первым типом памяти является встроенная память (или основная память). Обычно известно, что эта память энергозависима, а это означает, что как только питание отключается, компьютер имеет тенденцию забывать хранящиеся в ней данные. Тип энергозависимой памяти — это RAM (оперативное запоминающее устройство). Именно здесь появляется вторичный тип памяти, известный как вспомогательная память. Мы можем рассматривать жесткий диск как яркий пример вспомогательной памяти. Эта память, в отличие от энергозависимой памяти, не стирается при отключении питания компьютера. Теперь давайте посмотрим и попробуем понять, как работают встроенная оперативная память и жесткие диски.

Внутренняя память

Что касается внутренней памяти, существует два типа: RAM (оперативное запоминающее устройство) и ROM (постоянное запоминающее устройство). Микросхемы оперативной памяти сохраняют информацию в своей памяти только до тех пор, пока не будет отключено питание. Поэтому он используется только для кратковременного хранения памяти. Микросхемы ПЗУ, с другой стороны, запоминают информацию независимо от того, выключено питание или нет. В ПЗУ запрограммирован набор инструкций, которые может прочитать только компьютер. На заводе ПЗУ используется для хранения таких вещей, как BIOS компьютера. BIOS управляет основными системными программами, такими как функции ввода/вывода, экран компьютера и клавиатура.

Оперативная память бывает двух видов: DRAM и SRAM. DRAM расшифровывается как Dynamic Random Access Memory, а SRAM расшифровывается как Static Random Access Memory. DRAM дешевле, чем SRAM. Он имеет более высокую плотность, чем SRAM, по отношению к объему памяти, который он может упаковать при том же размере, поэтому он используется для большей части внутренней памяти, которую вы найдете в ПК, игровых консолях и подобных устройствах. SRAM быстрее и потребляет меньше энергии, чем DRAM, и, учитывая ее более высокую стоимость и меньшую плотность, с большей вероятностью будет использоваться в небольших временных «рабочих памяти» (кэшах), которые являются частью внутренней или внешней памяти компьютера. SRAM широко используется в мобильных телефонах, где энергопотребление имеет первостепенное значение.

Что касается ПЗУ, то существует два типа: EPROM и EEPROM (электрически стираемое программируемое ПЗУ). Сегодняшние устройства в основном имеют EEPROM. EEPROM может хранить данные неограниченное время, но данные можно стереть, пропустив через нее электрический ток.EPROM использовался только в прошлом, но в современных устройствах он больше не используется. Причина этого в том, что для того, чтобы стереть память в СППЗУ, ее нужно тщательно удалить из схемы, а затем на нее нужно посветить сильным ультрафиолетом, чтобы удалить память.

Вспомогательная память

Вспомогательная память является статической памятью, что означает, что даже после отключения питания память остается нетронутой. Наиболее распространенным видом вспомогательной памяти являются жесткие диски и компакт-диски. Однако, глядя на долгую и захватывающую историю компьютерных запоминающих устройств, первым типом вспомогательных дисков на самом деле была дискета. Использовался с конца 70-х до середины 90-х. Это были маленькие тонкие круги из пластика, покрытые магнитным материалом, вращающиеся внутри прочных пластиковых корпусов, которые постепенно уменьшались в размерах примерно с 8 дюймов до 5,25 дюймов, вплоть до окончательного, самого популярного размера около 3,5 дюймов.

Следующим типом запоминающих устройств были Zip-накопители. Zip-накопители были похожи на гибкие диски, но хранили гораздо больше информации в сильно сжатой форме внутри объемных картриджей. В 1970-х и 1980-х годах микрокомпьютеры — предки современных компьютеров — часто хранили информацию с помощью кассет, точно таких же, как те, которые люди использовали тогда для воспроизведения музыки. Вы можете быть удивлены, узнав, что крупные компьютерные отделы до сих пор широко используют ленты для резервного копирования данных, в основном потому, что этот метод настолько прост и недорог. Неважно, что ленты работают медленно и последовательно, когда вы используете их для резервного копирования, потому что, как правило, вы хотите копировать и восстанавливать свои данные очень систематически, а время не обязательно так важно.

Таким образом, в заключение следует отметить, что различные методы хранения в памяти работают по-разному при отключении питания; некоторые стирают хранящиеся в них данные, а другие хранят их бесконечно!

Изучите множество устройств, предназначенных для увеличения емкости вашего цифрового хранилища, и узнайте, как они работают.

Емкость хранилища больше не зависит от физической емкости вашего компьютера. Существует множество вариантов хранения ваших файлов при сохранении места на вашем компьютере, телефоне или планшете. Если ваши устройства работают медленно и на них не хватает места, вы можете выгрузить файлы на физическое устройство хранения. Или, что еще лучше, используйте лучшие технологии хранения и сохраняйте файлы в облаке.

Облачное хранилище

Хотя облачное хранилище не является устройством как таковым, оно является новейшим и наиболее универсальным типом хранилища для компьютеров. «Облако» — это не одно место или объект, а огромная коллекция серверов, размещенных в центрах обработки данных по всему миру. Когда вы сохраняете документ в облаке, вы сохраняете его на этих серверах.

Поскольку облачное хранилище хранит все в Интернете, оно не использует дополнительное хранилище вашего компьютера, что позволяет вам экономить место.

Облачное хранилище обеспечивает значительно большую емкость по сравнению с USB-накопителями и другими физическими устройствами. Это избавляет вас от необходимости просматривать каждое устройство в поисках нужного файла.

Хотя внешние жесткие диски и твердотельные накопители когда-то пользовались популярностью из-за их портативности, они также уступают облачным хранилищам. Не так много карманных внешних жестких дисков. Хотя они меньше и легче, чем внутренний накопитель компьютера, они все же являются осязаемыми устройствами. Облако, с другой стороны, может быть с вами где угодно, не занимая физического места и не подвергаясь физическим уязвимостям внешнего диска.

Внешние устройства хранения также были популярны как быстрое решение для передачи файлов, но они полезны только в том случае, если у вас есть доступ к каждому физическому устройству. Облачные вычисления процветают, поскольку многие предприятия теперь работают удаленно. Вполне вероятно, что вы не стали бы отправлять USB-накопитель за границу, чтобы отправить коллеге большой файл. Облачное хранилище действует как мост между удаленными работниками, что упрощает совместную работу на расстоянии.

Если вы забудете принести на встречу жесткий диск с важными документами, вы ничего не сможете сделать, кроме как вернуться и взять его. Если вы вообще сломаете или потеряете жесткий диск, маловероятно, что вы когда-нибудь вернете эти данные. Этих рисков не существует для облачного хранилища — ваши данные зарезервированы и доступны в любое время и в любом месте, если у вас есть доступ к Интернету.

Благодаря онлайн-файлам Dropbox вы можете получить доступ к любому файлу в своем аккаунте с рабочего стола, не занимая место на жестком диске. Это похоже на локальное хранение ваших файлов — только они не занимают место на вашем диске. Сохранение всех ваших файлов в Dropbox означает, что они всегда доступны в один клик.Вы можете получить к ним доступ с любого устройства с подключением к Интернету и мгновенно поделиться ими.

Внешние устройства хранения

Помимо носителей данных, содержащихся в компьютере, существуют также цифровые устройства хранения, которые являются внешними по отношению к компьютерам. Они обычно используются для увеличения емкости хранилища на компьютере, на котором мало места, обеспечения большей мобильности или упрощения передачи файлов с одного устройства на другое.

А если вы хотите перенести файлы с внешних дисков в облако, вы можете использовать резервное копирование на внешний диск и получать доступ к своим файлам из любого места.

Внешние жесткие и твердотельные диски

В качестве внешних дисков можно использовать как жесткие диски, так и твердотельные накопители. Как правило, они предлагают наибольшую емкость хранилища среди внешних вариантов: внешние жесткие диски предлагают до 20 ТБ хранилища и (по разумной цене) внешние твердотельные накопители предлагают до 8 ТБ хранилища.

Внешние жесткие и твердотельные диски работают точно так же, как и их внутренние аналоги. Большинство внешних накопителей можно подключить к любому компьютеру; они не привязаны к одному устройству, поэтому являются достойным решением для передачи файлов между устройствами.

Устройства флэш-памяти

Мы упоминали флэш-память ранее при обсуждении твердотельных накопителей. Устройство флэш-памяти содержит триллионы взаимосвязанных ячеек флэш-памяти, в которых хранятся данные. Эти ячейки содержат миллионы транзисторов, которые при включении и выключении представляют 1 и 0 в двоичном коде, что позволяет компьютеру считывать и записывать информацию.

Одним из наиболее узнаваемых типов устройств флэш-памяти является USB-накопитель. Эти небольшие портативные запоминающие устройства, также известные как флэш-накопители или карты памяти, долгое время были популярным выбором в качестве дополнительного хранилища данных на компьютере. Прежде чем обмениваться файлами в Интернете стало легко и быстро, USB-накопители были необходимы для простого перемещения файлов с одного устройства на другое. Однако их можно использовать только на устройствах с портом USB. Большинство старых компьютеров имеют USB-порт, но для новых может потребоваться адаптер.

В наши дни флэш-накопитель USB может вмещать до 2 ТБ. Они обходятся дороже за гигабайт, чем внешний жесткий диск, но преобладают как простое и удобное решение для хранения и передачи небольших файлов.

Помимо USB-накопителей, устройства флэш-памяти также включают SD и карты памяти, которые вы узнаете как носитель данных, используемый в цифровых камерах.

Оптические запоминающие устройства

Компакт-диски, DVD-диски и диски Blu-Ray используются не только для воспроизведения музыки и видео — они также служат устройствами хранения данных. В совокупности они называются оптическими запоминающими устройствами или оптическими носителями.

Двоичный код хранится на этих дисках в виде крошечных выпуклостей вдоль дорожки, которая по спирали идет наружу от центра диска. Когда диск работает, он вращается с постоянной скоростью, а лазер внутри дисковода сканирует неровности на диске. То, как лазер отражает или отскакивает от удара, определяет, представляет ли он 0 или 1 в двоичном формате.

DVD имеет более плотную спиральную дорожку, чем компакт-диск, что позволяет хранить на нем больше данных, несмотря на тот же размер, а в приводах DVD используется более тонкий красный лазер, чем в приводах компакт-дисков. DVD-диски также позволяют использовать двойной слой для дальнейшего увеличения их емкости. Blu-Ray вывел вещи на новый уровень, сохраняя данные на нескольких слоях с еще меньшими выпуклостями, которые требуют еще более тонкого синего лазера для их чтения.

  • CD-ROM, DVD-ROM и BD-ROM относятся к оптическим дискам, предназначенным только для чтения. Данные, записанные на них, являются постоянными и не могут быть удалены или перезаписаны. Вот почему их нельзя использовать в качестве личного хранилища. Вместо этого они обычно используются для программ установки программного обеспечения.
  • Диски формата CD-R, DVD-R и BD-R можно записывать, но нельзя перезаписывать. Любые данные, которые вы сохраните на чистом записываемом диске, будут постоянно храниться на этом диске. Таким образом, они могут хранить данные, но не так гибки, как другие устройства хранения.
  • CD-RW, DVD-RW и BD-RE можно перезаписывать. Это позволяет вам записывать на них новые данные и стирать с них ненужные данные сколько угодно. Их обогнали более новые технологии, такие как флэш-память, но CD-RW когда-то были лучшим выбором для внешнего хранилища. Большинство настольных компьютеров и многие ноутбуки оснащены дисководами для компакт-дисков или DVD-дисков.

CD может хранить до 700 МБ данных, DVD-DL — до 8,5 ГБ, а Blu-Ray — от 25 до 128 ГБ данных.

Диски

Хотя на данный момент они могут быть устаревшими, мы не можем обсуждать устройства хранения, не упомянув хотя бы скромную дискету, также известную как дискета. Дискеты были первыми широко доступными портативными съемными запоминающими устройствами. Вот почему большинство значков «Сохранить» выглядят именно так: они созданы по образцу дискеты. Они работают так же, как жесткие диски, но в гораздо меньших масштабах.

Емкость гибких дисков никогда не превышала 200 МБ до того, как CD-RW и флэш-накопители стали предпочтительными носителями информации.iMac был первым персональным компьютером, выпущенным без дисковода для гибких дисков в 1998 году. С этого момента более чем 30-летнее господство гибких дисков очень быстро пошло на убыль.

Хранение в компьютерных системах

Запоминающее устройство – это устройство, которое в основном используется для хранения данных. В каждом настольном компьютере, ноутбуке, планшете и смартфоне есть какое-то запоминающее устройство. Существуют также автономные внешние накопители, которые можно использовать на разных устройствах.

Хранилище необходимо не только для хранения файлов, но и для выполнения задач и приложений. Любой файл, который вы создаете или сохраняете на своем компьютере, сохраняется на запоминающем устройстве вашего компьютера. На этом устройстве хранения также хранятся все приложения и операционная система вашего компьютера.

По мере развития технологий устройства хранения данных также претерпели значительные изменения. В настоящее время устройства хранения данных бывают самых разных форм и размеров, и существует несколько различных типов устройств хранения данных, предназначенных для различных устройств и функций.

Запоминающее устройство также известно как носитель данных или носитель данных. Объем цифрового хранилища измеряется в мегабайтах (МБ), гигабайтах (ГБ) и, в наши дни, в терабайтах (ТБ).

Некоторые компьютерные запоминающие устройства могут хранить информацию постоянно, а другие — только временно. На каждом компьютере есть как первичная, так и вторичная память, при этом первичная память действует как кратковременная память компьютера, а вторичная — как долговременная память компьютера.

Основное хранилище: оперативная память (ОЗУ)

Оперативное запоминающее устройство, или ОЗУ, — это основное хранилище компьютера.

Когда вы работаете с файлом на своем компьютере, он временно сохраняет данные в вашей оперативной памяти. Оперативная память позволяет выполнять повседневные задачи, такие как открытие приложений, загрузка веб-страниц, редактирование документа или игра в игры. Это также позволяет вам переходить от одной задачи к другой, не теряя прогресса. По сути, чем больше объем оперативной памяти вашего компьютера, тем плавнее и быстрее вы сможете выполнять многозадачные задачи.

ОЗУ — это энергозависимая память, то есть в ней не может храниться информация после выключения системы. Например, если вы скопируете блок текста, перезагрузите компьютер, а затем попытаетесь вставить этот блок текста в документ, вы обнаружите, что ваш компьютер забыл скопированный текст. Это потому, что он был временно сохранен в вашей оперативной памяти.

Оперативная память позволяет компьютеру получать доступ к данным в случайном порядке и, таким образом, считывает и записывает их намного быстрее, чем дополнительная память компьютера.

Вторичное хранилище: жесткие диски (HDD) и твердотельные накопители (SSD)

Помимо ОЗУ, на каждом компьютере есть еще один накопитель, который используется для долговременного хранения информации. Это вторичное хранилище. Любой файл, который вы создаете или загружаете, сохраняется во вторичном хранилище компьютера. В качестве вторичного хранилища в компьютерах используются два типа запоминающих устройств: HDD и SSD. В то время как жесткие диски являются более традиционными из двух, твердотельные накопители быстро обгоняют жесткие диски в качестве предпочтительной технологии для вторичного хранения.

Дополнительные устройства хранения часто являются съемными, поэтому вы можете заменить или обновить хранилище вашего компьютера или перенести свой накопитель на другой компьютер. Есть заметные исключения, например MacBook, в которых нет съемных носителей.

Жесткие диски (HDD)

Жесткий диск (HDD) — это исходный жесткий диск. Это магнитные запоминающие устройства, которые существуют с 1950-х годов, хотя со временем они совершенствовались.

Жесткий диск состоит из стопки вращающихся металлических дисков, известных как пластины. Каждый вращающийся диск состоит из триллионов крошечных фрагментов, которые можно намагничивать для представления битов (1 и 0 в двоичном коде). Приводной рычаг с головкой чтения/записи сканирует вращающиеся пластины и намагничивает фрагменты для записи цифровой информации на жесткий диск или обнаруживает магнитные заряды для считывания информации с него.

Жесткие диски используются для телерекордеров, серверов, а также для хранения данных на ноутбуках и ПК.

Твердотельные накопители (SSD)

Твердотельные накопители появились совсем недавно, в 90-х годах. SSD не полагаются на магниты и диски, вместо этого они используют тип флэш-памяти, называемый NAND. В SSD полупроводники хранят информацию, изменяя электрический ток цепей, содержащихся в накопителе. Это означает, что, в отличие от жестких дисков, для работы твердотельных накопителей не требуются движущиеся части.

Из-за этого твердотельные накопители не только работают быстрее и плавнее, чем жесткие диски (жестким дискам требуется больше времени для сбора информации из-за механической природы их пластин и головок), но и, как правило, служат дольше, чем жесткие диски (с таким количеством сложных движущихся частей, Жесткие диски уязвимы к повреждению и износу).

Помимо новых ПК и ноутбуков высокого класса, твердотельные накопители можно найти в смартфонах, планшетах и ​​иногда в видеокамерах.

Лучший способ хранения больших объемов данных

Если на ваших устройствах заканчивается свободное место, пора поискать альтернативное запоминающее устройство.Даже на внешних запоминающих устройствах, таких как флэш-накопители, может закончиться свободное место, они могут сломаться или потеряться. Вот почему лучший способ хранить все ваши файлы — в облаке. Это безопаснее, быстрее и проще.

Некоторые типы компьютерной памяти спроектированы так, чтобы быть очень быстрыми, а это означает, что центральный процессор (ЦП) может очень быстро получить доступ к хранящимся там данным. Другие типы спроектированы так, чтобы быть очень дешевыми, поэтому в них можно экономично хранить большие объемы данных.

Еще одна особенность компьютерной памяти заключается в том, что некоторые типы памяти являются энергонезависимыми, что означает, что они могут хранить данные в течение длительного времени даже при отсутствии питания. А некоторые типы являются изменчивыми, которые часто работают быстрее, но теряют все хранящиеся на них данные при отключении питания.

Компьютерная система создается с использованием комбинации этих типов компьютерной памяти, и точная конфигурация может быть оптимизирована для обеспечения максимальной скорости обработки данных или минимальной стоимости, или некоторого компромисса между ними.

Оглавление

Какие существуют типы компьютерной памяти?

Несмотря на то, что в компьютере существует много типов памяти, основное различие между основной памятью, часто называемой системной памятью, и вторичной памятью, которую чаще называют хранилищем.

Ключевое различие между первичной и вторичной памятью заключается в скорости доступа.

  • Основная память включает в себя ПЗУ и ОЗУ и расположена рядом с ЦП на материнской плате компьютера, что позволяет ЦП действительно очень быстро считывать данные из основной памяти. Он используется для хранения данных, которые необходимы ЦП в ближайшее время, чтобы ему не приходилось ждать их доставки.
  • Вторичная память, напротив, обычно физически расположена в отдельном устройстве хранения, таком как жесткий диск или твердотельный накопитель (SSD), который подключен к компьютерной системе либо напрямую, либо по сети. Стоимость гигабайта вторичной памяти намного ниже, но скорость чтения и записи значительно ниже.

За несколько периодов развития компьютеров было развернуто множество типов компьютерной памяти, каждый из которых имел свои сильные и слабые стороны.

Основные типы памяти: RAM и ROM

Существует два основных типа основной памяти:

Давайте подробно рассмотрим оба типа памяти.

1) ОЗУ Память компьютера

Акроним RAM связан с тем, что к данным, хранящимся в оперативной памяти, можно обращаться, как следует из названия, в любом произвольном порядке. Или, другими словами, к любому случайному биту данных можно получить доступ так же быстро, как и к любому другому биту.

Самое важное, что нужно знать об ОЗУ, это то, что ОЗУ работает очень быстро, в нее можно не только читать, но и записывать, она энергозависима (поэтому все данные, хранящиеся в ОЗУ, теряются при отключении питания) и, наконец, , это очень дорого по сравнению со всеми типами вторичной памяти по стоимости за гигабайт. Именно из-за относительно высокой стоимости оперативной памяти по сравнению с дополнительными типами памяти большинство компьютерных систем используют как основную, так и дополнительную память.

Данные, необходимые для предстоящей обработки, перемещаются в ОЗУ, где к ним можно получить доступ и изменить их очень быстро, чтобы ЦП не оставался в ожидании. Когда данные больше не требуются, они перемещаются в более медленную, но более дешевую вторичную память, а освободившееся место в ОЗУ заполняется следующим блоком данных, который будет использоваться.

Типы оперативной памяти

  • DRAM: DRAM расшифровывается как Dynamic RAM и является наиболее распространенным типом RAM, используемым в компьютерах. Самый старый тип известен как DRAM с одинарной скоростью передачи данных (SDR), но новые компьютеры используют более быструю DRAM с двойной скоростью передачи данных (DDR). DDR поставляется в нескольких версиях, включая DDR2, DDR3 и DDR4, которые обеспечивают лучшую производительность и более энергоэффективны, чем DDR. Однако разные версии несовместимы, поэтому невозможно смешивать DDR2 с DDR3 DRAM в компьютерной системе. DRAM состоит из транзистора и конденсатора в каждой ячейке.
  • SRAM: SRAM означает статическое ОЗУ. Это особый тип ОЗУ, который работает быстрее, чем DRAM, но дороже и объемнее, поскольку в каждой ячейке имеется шесть транзисторов. По этим причинам SRAM обычно используется только в качестве кэша данных внутри самого ЦП или в качестве ОЗУ в серверных системах очень высокого класса. Небольшой кэш SRAM для наиболее необходимых данных может привести к значительному повышению скорости работы системы.

Ключевое различие между DRAM и SRAM заключается в том, что SRAM быстрее, чем DRAM, возможно, в два-три раза быстрее, но дороже и громоздче.SRAM обычно доступен в мегабайтах, а DRAM приобретается в гигабайтах.

DRAM потребляет больше энергии, чем SRAM, поскольку ее необходимо постоянно обновлять для поддержания целостности данных, тогда как SRAM, хотя и энергозависимая, не требует постоянного обновления при включении.

2) ROM Память компьютера

ROM означает постоянную память, и это название связано с тем фактом, что, хотя данные могут быть прочитаны из компьютерной памяти этого типа, данные обычно не могут быть записаны в нее. Это очень быстрый тип компьютерной памяти, который обычно устанавливается рядом с процессором на материнской плате.

ПЗУ — это тип энергонезависимой памяти, что означает, что данные, хранящиеся в ПЗУ, сохраняются в памяти, даже когда на нее не подается питание, например, когда компьютер выключен. В этом смысле она похожа на вторичную память, которая используется для долговременного хранения.

Когда компьютер включен, ЦП может начать считывать информацию, хранящуюся в ПЗУ, без необходимости в драйверах или другом сложном программном обеспечении, помогающем ему взаимодействовать. ПЗУ обычно содержит «загрузочный код», который представляет собой базовый набор инструкций, которые компьютер должен выполнить, чтобы узнать об операционной системе, хранящейся во вторичной памяти, и загрузить части операционной системы в первичную память, чтобы он мог запуститься. и будьте готовы к использованию.

ПЗУ также используется в более простых электронных устройствах для хранения прошивки, которая запускается сразу после включения устройства.

Типы ПЗУ

ПЗУ доступно в нескольких различных типах, включая PROM, EPROM и EEPROM.

  • PROM PROM расшифровывается как Programmable Read-Only Memory и отличается от настоящего ROM тем, что в то время как ROM программируется (т.е. в него записываются данные) в процессе производства, PROM изготавливается в пустом состоянии, а затем запрограммированы позже с помощью программатора PROM или записи.
  • EPROM EPROM расшифровывается как Erasable Programmable Read-Only Memory, и, как следует из названия, данные, хранящиеся в EPROM, можно стереть, а EPROM перепрограммировать. Для стирания EPROM необходимо извлечь его из компьютера и подвергнуть воздействию ультрафиолетового света перед повторной записью.
  • EEPROM EEPROM расшифровывается как электрически стираемое программируемое постоянное запоминающее устройство, и различие между EPROM и EEPROM заключается в том, что последнее может быть стерто и записано компьютерной системой, в которой оно установлено. В этом смысле EEPROM строго не читается. Только. Однако во многих случаях процесс записи идет медленно, поэтому обычно это делается только для периодического обновления программного кода, такого как микропрограмма или код BIOS.

Как ни странно, флэш-память NAND (например, в USB-накопителях и твердотельных накопителях) является типом EEPROM, но флэш-память NAND считается вторичной памятью.

Вторичные типы памяти

Вторичная память включает множество различных носителей данных, которые можно напрямую подключить к компьютерной системе. К ним относятся:

Вторичная память также включает:

    включая флэш-массивы 3D NAND, подключенные к сети хранения данных (SAN)
  • Устройства хранения, которые могут быть подключены через обычную сеть (известную как сетевое хранилище или NAS).

Возможно, облачное хранилище также можно назвать вторичной памятью.

Различия между ОЗУ и ПЗУ

ПЗУ:

  • Энергонезависимая
  • Быстро читать
  • Обычно используется в небольших количествах.
  • Невозможно быстро записать
  • Используется для хранения инструкций по загрузке или прошивки.
  • Относительно высокая стоимость хранения одного мегабайта по сравнению с оперативной памятью.

ОЗУ:

  • Нестабильный
  • Быстро читать и писать
  • Используется в качестве системной памяти для хранения данных (включая программный код), которые ЦП должен немедленно обработать
  • Относительно дешевое значение в пересчете на мегабайт по сравнению с ПЗУ, но относительно дорогое по сравнению со вторичной памятью.

Какая технология находится между первичной и вторичной памятью?

За последний год или около того был разработан новый носитель памяти под названием 3D XPoint, характеристики которого находятся между первичной и вторичной памятью.

3D XPoint дороже, но быстрее, чем дополнительная память, и дешевле, но медленнее, чем оперативная память. Это также тип энергонезависимой памяти.

Эти характеристики означают, что ее можно использовать в качестве альтернативы ОЗУ в системах, которым требуется огромный объем системной памяти, создание которой с использованием ОЗУ было бы слишком дорого (например, в системах с базами данных в оперативной памяти). Компромисс заключается в том, что такие системы не получают полного прироста производительности за счет использования оперативной памяти.

Поскольку 3D XPoint является энергонезависимым, системы, использующие 3D XPoint в качестве системной памяти, могут быть запущены и снова запущены после сбоя питания или другого прерывания очень быстро, без необходимости считывания всех данных обратно в системную память из вторичная память.

Читайте также: