В зависимости от назначения компьютера, на котором установлены системы, выделяют
Обновлено: 21.11.2024
Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.
Что такое компьютерная сеть?
Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).
Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.
Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.
Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.
Типы компьютерных сетей
По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:
Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.
WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.
WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.
MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.
PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.
SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)
CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.
VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.
Важные термины и понятия
Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:
IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.
Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.
Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.
Коммутаторы. Коммутатор – это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:
Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.
Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.
Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.
Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.
Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.
Примеры компьютерных сетей
Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.
В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.
Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.
The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.
Компьютерные сети и Интернет
Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.
Как они работают?
Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.
Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.
Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.
Архитектура
Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.
Основные типы сетевой архитектуры
В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер.В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.
Топология сети
Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.
Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:
При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.
В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.
В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.
сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.
Безопасность
Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.
Существует много точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.
Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.
Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.
Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.
Ячеистые сети
Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.
Тип ячеистых сетей
Существует два типа ячеистых сетей — полная и частичная:
- В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
- беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.
Балансировщики нагрузки и сети
Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.
Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.
Сети доставки контента
Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.
Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.
Компьютерные сетевые решения и IBM
Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.
Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все это упомянуто выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:
-
— это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.
Сетевые службы в IBM Cloud предоставляют вам сетевые решения для увеличения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.
Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.
Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.
Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.
операционная система (ОС), программа, которая управляет ресурсами компьютера, особенно распределением этих ресурсов среди других программ. Типичные ресурсы включают центральный процессор (ЦП), память компьютера, хранилище файлов, устройства ввода-вывода (I/O) и сетевые подключения. Задачи управления включают планирование использования ресурсов, чтобы избежать конфликтов и помех между программами. В отличие от большинства программ, которые выполняют задачу и завершают работу, операционная система работает бесконечно и завершает работу только при выключении компьютера.
Современные многопроцессорные операционные системы позволяют активировать множество процессов, где каждый процесс представляет собой «поток» вычислений, используемый для выполнения программы. Одна из форм многопроцессорной обработки называется разделением времени, что позволяет многим пользователям совместно использовать доступ к компьютеру, быстро переключаясь между ними. Разделение времени должно защищать от помех между программами пользователей, и в большинстве систем используется виртуальная память, в которой память или «адресное пространство», используемое программой, может находиться во вторичной памяти (например, на магнитном жестком диске), когда не используется в данный момент, чтобы его можно было заменить обратно, чтобы по требованию занять более быструю основную память компьютера. Эта виртуальная память увеличивает адресное пространство, доступное для программы, и помогает предотвратить вмешательство программ друг в друга, но требует тщательного контроля со стороны операционной системы и набора таблиц распределения для отслеживания использования памяти. Пожалуй, самой деликатной и критической задачей для современной операционной системы является выделение центрального процессора; каждому процессу разрешается использовать ЦП в течение ограниченного времени, которое может составлять доли секунды, а затем он должен отказаться от управления и приостановиться до следующего хода. Переключение между процессами само по себе должно использовать ЦП при защите всех данных процессов.
Компьютеры размещают веб-сайты, состоящие из HTML, и отправляют текстовые сообщения так же просто, как. РЖУ НЕ МОГУ. Взломайте этот тест, и пусть какая-нибудь технология подсчитает ваш результат и раскроет вам его содержание.
У первых цифровых компьютеров не было операционных систем. Они запускали одну программу за раз, которая распоряжалась всеми системными ресурсами, а оператор-человек предоставлял любые необходимые специальные ресурсы. Первые операционные системы были разработаны в середине 1950-х гг. Это были небольшие «программы-супервизоры», которые обеспечивали базовые операции ввода-вывода (такие как управление считывателями перфокарт и принтерами) и вели учет использования ЦП для выставления счетов. Программы супервизора также предоставляли возможности мультипрограммирования, позволяющие запускать несколько программ одновременно. Это было особенно важно, чтобы эти первые многомиллионные машины не простаивали во время медленных операций ввода-вывода.
Компьютеры приобрели более мощные операционные системы в 1960-х годах с появлением разделения времени, которое требовало системы для управления несколькими пользователями, совместно использующими процессорное время и терминалы. Двумя ранними системами разделения времени были CTSS (совместимая система разделения времени), разработанная в Массачусетском технологическом институте, и базовая система Дартмутского колледжа, разработанная в Дартмутском колледже. Другие многопрограммные системы включали Atlas в Манчестерском университете, Англия, и IBM OS/360, вероятно, самый сложный программный пакет 1960-х годов. После 1972 года система Multics для компьютера General Electric Co. GE 645 (а позже и для компьютеров Honeywell Inc.) стала самой сложной системой с большинством возможностей мультипрограммирования и разделения времени, которые позже стали стандартными.
У мини-компьютеров 1970-х годов был ограниченный объем памяти и требовались операционные системы меньшего размера. Самой важной операционной системой того периода была UNIX, разработанная AT&T для больших миникомпьютеров как более простая альтернатива Multics. Он стал широко использоваться в 1980-х годах, отчасти потому, что он был бесплатным для университетов, а отчасти потому, что он был разработан с набором инструментов, которые были мощными в руках опытных программистов. Совсем недавно Linux, версия UNIX с открытым исходным кодом, разработанная частично группой под руководством финского студента информатики Линуса Торвальдса и частично группой под руководством американского программиста Ричарда Столлмана, стала популярной как на персональных компьютерах, так и на большие компьютеры.
Помимо таких систем общего назначения, на небольших компьютерах работают специальные операционные системы, которые управляют сборочными линиями, самолетами и даже бытовой техникой. Это системы реального времени, предназначенные для обеспечения быстрого реагирования на датчики и использования их входных данных для управления механизмами. Операционные системы также были разработаны для мобильных устройств, таких как смартфоны и планшеты. iOS от Apple Inc., работающая на iPhone и iPad, и Android от Google Inc. — две известные мобильные операционные системы.
С точки зрения пользователя или прикладной программы операционная система предоставляет услуги. Некоторые из них представляют собой простые пользовательские команды, такие как «dir» — показать файлы на диске, а другие — низкоуровневые «системные вызовы», которые графическая программа может использовать для отображения изображения. В любом случае операционная система обеспечивает соответствующий доступ к своим объектам, таблицам расположения дисков в одном случае и подпрограммам для передачи данных на экран в другом. Некоторые из его подпрограмм, управляющие процессором и памятью, обычно доступны только другим частям операционной системы.
Современные операционные системы для персональных компьютеров обычно имеют графический интерфейс пользователя (GUI). Графический интерфейс пользователя может быть неотъемлемой частью системы, как в старых версиях Mac OS от Apple и ОС Windows от Microsoft Corporation; в других случаях это набор программ, которые зависят от базовой системы, как в системе X Window для UNIX и Mac OS X от Apple.
Операционные системы также предоставляют сетевые службы и возможности обмена файлами — даже возможность совместного использования ресурсов между системами разных типов, такими как Windows и UNIX. Такое совместное использование стало возможным благодаря внедрению сетевых протоколов (правил связи), таких как TCP/IP в Интернете.
Хотите узнать, какое аппаратное обеспечение установлено на вашем компьютере? Станьте профессионалом в области компьютеров с нашим кратким руководством по этим важным компонентам и их функциям.
Проще говоря, компьютерное оборудование — это физические компоненты, необходимые для работы компьютерной системы. Он включает в себя все, что связано с печатной платой, работающей внутри ПК или ноутбука; включая материнскую плату, видеокарту, ЦП (центральный процессор), вентиляторы, веб-камеру, блок питания и т. д.
Хотя конструкция аппаратного обеспечения настольных ПК и ноутбуков различается из-за различий в размерах, в обоих случаях используются одни и те же основные компоненты.Без оборудования не было бы возможности запуска необходимого программного обеспечения, которое делает компьютеры такими полезными. Программное обеспечение определяется как виртуальные программы, которые работают на вашем компьютере; то есть операционная система, интернет-браузер, текстовые документы и т. д.
Хотя компьютер может работать только тогда, когда и аппаратное, и программное обеспечение работают вместе, скорость системы во многом зависит от используемого оборудования.
При сборке нового компьютера или просто замене старых деталей вам может понадобиться информация о конкретном аппаратном обеспечении вашего компьютера. Таким образом, цель этого руководства — помочь вам понять внутреннюю работу вашего компьютера.
Что такое материнская плата?
Системная плата — это центральная часть работы ПК. Он содержит ЦП и является концентратором, через который проходит все остальное оборудование. Материнская плата действует как мозг; распределение мощности там, где это необходимо, обмен данными и координация между всеми другими компонентами, что делает его одним из самых важных аппаратных средств компьютера.
При выборе материнской платы важно проверить, какие аппаратные порты поддерживает материнская плата. Крайне важно проверить, сколько портов USB и какого класса (USB 2.0, 3.0, 3.1), а также какие порты дисплея используются (HDMI, DVI, RGB) и сколько их имеется. Порты на материнской плате также помогут вам определить, какое другое оборудование будет совместимо с вашим компьютером, например, какой тип оперативной памяти и видеокарты вы можете использовать.
Что такое ЦП (центральный процессор/блок процессора)?
ЦП (центральный процессор или процессор) отвечает за обработку всей информации от программ, запускаемых на вашем компьютере. «Тактовая частота», или скорость, с которой процессор обрабатывает информацию, измеряется в гигагерцах (ГГц). Это означает, что процессор с высокой тактовой частотой, скорее всего, будет работать быстрее, чем процессор с аналогичными характеристиками той же марки и возраста.
Что такое оперативная память?
Оперативное запоминающее устройство, или ОЗУ, — это аппаратное обеспечение, которое находится в слотах памяти на материнской плате. Роль ОЗУ заключается во временном хранении оперативной информации, созданной программами, и делать это таким образом, чтобы эти данные были немедленно доступны. Задачи, требующие случайной памяти, могут быть; рендеринг изображений для графического дизайна, редактирование видео или фотографий, многозадачность с несколькими открытыми приложениями (например, запуск игры на одном экране и общение в Discord на другом).
Требуемый объем оперативной памяти зависит от программ, которые вы будете запускать. Игры средней интенсивности обычно используют 8 ГБ памяти, когда они выполняются вместе с другими программами, но видео/графический дизайн может использовать более 16 ГБ ОЗУ. Узнайте, сколько памяти нужно вашему компьютеру.
Что такое жесткий диск?
Жесткий диск – это запоминающее устройство, предназначенное для хранения постоянных и временных данных. Эти данные поступают в различных формах, но в основном это все, что сохраняется или устанавливается на компьютер: например, компьютерные программы, семейные фотографии, операционная система, текстовые документы и т. д. Узнайте больше о жестких дисках и о том, как они работают.
Существует два разных типа устройств хранения: традиционный жесткий диск (HDD) и более новые твердотельные накопители (SSD). Жесткие диски работают путем записи двоичных данных на вращающиеся магнитные диски, называемые пластинами, которые вращаются с высокой скоростью, в то время как твердотельный накопитель хранит данные с помощью статических микросхем флэш-памяти. Узнайте больше о компьютерной памяти и о том, как работают твердотельные накопители.
Что такое графический процессор (GPU)?
Что особенно важно для 3D-рендеринга, GPU делает именно то, что следует из его названия, и обрабатывает огромные пакеты графических данных. Вы обнаружите, что видеокарта вашего компьютера имеет по крайней мере один графический процессор. В отличие от основных встроенных графических возможностей, предоставляемых материнскими платами ПК, выделенные графические карты взаимодействуют с материнской платой через слот расширения для работы почти исключительно с графическим рендерингом. Это также означает, что вы можете обновить видеокарту, если хотите повысить производительность своего ПК.
Не только это, но и то, что современные графические процессоры выполняют широкую вычислительную нагрузку, помимо рендеринга, что делает их расширением центрального процессора.
Что такое блок питания (БП)?
Блок питания, обычно называемый блоком питания, не просто обеспечивает питание вашего компьютера. Это точка, в которой питание поступает в вашу систему от внешнего источника питания, а затем распределяется материнской платой по отдельным компонентам аппаратного обеспечения. Однако не все блоки питания сделаны одинаково, и без блока питания правильной мощности ваша система не будет работать.
Современному компьютеру обычно требуется блок питания мощностью от 500 до 850 Вт для эффективного питания всего оборудования, хотя размер блока питания полностью зависит от энергопотребления системы.Для компьютеров, которые используются для выполнения ресурсоемких задач, таких как графический дизайн или игры, потребуются более мощные компоненты, поэтому для удовлетворения этих дополнительных потребностей потребуется более мощный блок питания.
Без необходимого количества энергии компоненты не смогут работать эффективно, а компьютер может зависать или вообще не загружаться. Рекомендуется иметь источник питания, который более чем покрывает использование вашей системы. Вы не только защищаете себя от сбоя системы, но и защищаете себя от необходимости приобретать новый блок питания при переходе на более мощные компоненты ПК.
Понимание вашего компьютера и его аппаратных компонентов может оказаться очень полезным, когда придет время модернизировать или заменить какие-либо детали или при сборке компьютера. Если возникнет проблема с внутренней работой вашего компьютера, вы лучше поймете важность каждого компонента, необходимость их хорошего рабочего состояния и способы решения любых проблем.
© Micron Technology, Inc., 2017. Все права защищены. Информация, продукты и технические характеристики могут быть изменены без предварительного уведомления. Ни Crucial, ни Micron Technology, Inc. не несут ответственности за упущения или ошибки в типографике или фотографии. Micron, логотип Micron, Crucial и логотип Crucial являются товарными знаками или зарегистрированными товарными знаками Micron Technology, Inc. Все остальные товарные знаки и знаки обслуживания являются собственностью соответствующих владельцев.
Независимо от того, покупаете ли вы ноутбук, настольный компьютер или планшет, важно, чтобы вы уделили время процессору устройства, жесткому диску, памяти, видеокарте и операционной системе, прежде чем совершать покупку. Эти пять компонентов составляют основу вашего компьютера. Убедившись, что вы покупаете правильное оборудование, вы можете определить разницу между компьютером, который работает хорошо и прослужит долго, и компьютером, который не работает ни с тем, ни с другим.
Процессор
Центральный процессор, или ЦП, служит мозгом вашего компьютера. Скорость процессора измеряется в гигагерцах или ГГц. При выборе процессора чем быстрее, тем лучше. Но более быстрые процессоры и дороже. Выбирая процессор для компьютеров вашей компании, подумайте, для чего вам нужен процессор. Если вы планируете использовать компьютер для обычной офисной работы с использованием, например, Microsoft Office 2013, Microsoft рекомендует процессор с тактовой частотой не менее 1 ГГц. Если вы планируете выполнять более сложную работу с интенсивным использованием графики, более быстрый процессор обеспечит повышенную производительность.
Жесткий диск
Жесткий диск — это место, где на вашем компьютере хранятся файлы, программы и другие данные. По состоянию на январь 2014 года на рынке представлены два типа жестких дисков: жесткие диски и твердотельные накопители. Твердотельные накопители быстрее, но и дороже. При выборе жесткого диска скорость и размер являются двумя наиболее важными факторами, которые следует учитывать. Если возможно, стремитесь к жесткому диску с объемом памяти не менее 1 терабайта.
Память
Память, также называемая ОЗУ, работает в тандеме с ЦП, чтобы определить, насколько быстро ваш компьютер выполняет задачи. Как и в большинстве вещей, связанных с компьютером, чем больше, тем лучше. Количество оперативной памяти измеряется в гигабайтах. Для средних вычислительных задач вам понадобится компьютер с оперативной памятью не менее 4 гигабайт. При выборе оперативной памяти убедитесь, что она совместима с вашей материнской платой.
Видеокарта
Видеокарта управляет обработкой видео на вашем компьютере. Покупая компьютеры, вы столкнетесь с двумя типами видеокарт: интегрированными и выделенными. Интегрированные видеокарты встроены в материнскую плату вашего компьютера. Выделенные видеокарты устанавливаются отдельно. Как правило, дискретные видеокарты более мощные. Если вы планируете редактировать видео, играть в игры или смотреть фильмы высокой четкости на компьютере, рекомендуется использовать специальную видеокарту.
Операционная система
По состоянию на январь 2014 года Windows — самая популярная операционная система в мире, установленная более чем на 80 % компьютеров в мире. Вы можете либо купить компьютер с предустановленной Windows, либо приобрести копию Windows самостоятельно, если решите собрать свой собственный ПК. Также доступны несколько альтернативных операционных систем с открытым исходным кодом, большинство из которых основаны на Linux. Все компьютеры Apple поставляются с предустановленной операционной системой Apple OS X.
Эндрю Теннисон пишет о культуре, технологиях, здоровье и множестве других тем с 2003 года. Его статьи публикуются в The Gazette, DTR и ZCom. Он имеет степень бакалавра искусств в области истории и степень магистра изящных искусств в области письма.
Читайте также: