В компьютерах для долговременного хранения информации используются 2 правильных ответа

Обновлено: 21.11.2024

Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, таком как офисное здание, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:

Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.

MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.

PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

SAN (сеть хранения данных). SAN – это специализированная сеть, обеспечивающая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.

Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

Коммутаторы. Коммутатор — это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.

Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер.В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.

Топология сети

Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:

При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.

В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует много точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все это упомянуто выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

    — это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые службы в IBM Cloud предоставляют вам сетевые решения для увеличения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.

Развить навыки работы в сети и получить профессиональную сертификацию IBM, пройдя курсы в рамках учебной программы Cloud Site Reliability Engineers (SRE) Professional.

<р>1. Основные устройства хранения

  • SRAM: статическая оперативная память. Он состоит из цепей, которые сохраняют сохраненную информацию до тех пор, пока подается питание. Она также известна как энергозависимая память. Он используется для построения кэш-памяти. Время доступа к SRAM меньше и намного быстрее по сравнению с DRAM, но с точки зрения стоимости оно дороже по сравнению с DRAM.
  • DRAM: динамическая оперативная память. Он используется для хранения двоичных битов в виде электрических зарядов, которые применяются к конденсаторам. Время доступа к DRAM меньше, чем к SRAM, но оно дешевле, чем SRAM, и имеет более высокую плотность упаковки.
  • SDRAM: Синхронная динамическая оперативная память. Это быстрее, чем DRAM. Он широко используется в компьютерах и других. После появления SDRAM на рынке появилась обновленная версия оперативной памяти с удвоенной скоростью передачи данных, то есть DDR1, DDR2, DDR3 и DDR4, которая широко использовалась в домашних и офисных настольных компьютерах и ноутбуках.

(ii) ПЗУ: Постоянная память. Данные, записанные или сохраненные в этих устройствах, являются энергонезависимыми, т. е. после сохранения данных в памяти их нельзя изменить или удалить. Память, из которой будет только читать, но не может писать. Этот тип памяти является энергонезависимым. Информация сохраняется постоянно при производстве только один раз. ПЗУ хранит инструкции, которые используются для запуска компьютера. Эта операция называется начальной загрузкой. Он также используется в других электронных устройствах, таких как стиральные машины и микроволновые печи. Микросхемы ПЗУ могут хранить только несколько мегабайт (МБ) данных, которые варьируются от 4 до 8 МБ на микросхему ПЗУ. Существует два типа ПЗУ:

  • PROM: PROM — это программируемая постоянная память. Это ПЗУ, которые можно запрограммировать. Специальный программатор PROM используется для ввода программы в PROM. После того, как чип был запрограммирован, информация в PROM не может быть изменена. ППЗУ энергонезависимое, то есть данные не теряются при отключении питания.
  • СППЗУ: Другой тип памяти — стираемая программируемая постоянная память. Можно стереть информацию, ранее хранившуюся в СППЗУ, и записать новые данные на микросхему.
<р>2. Магнитные запоминающие устройства

(i) Дискета: также известна как дискета. Обычно он используется на персональном компьютере для внешнего хранения данных. Дискета состоит из пластикового картриджа и защищена защитным чехлом.В настоящее время дискеты заменены новыми и эффективными устройствами хранения, такими как USB и т. д.

(ii) Жесткий диск: это запоминающее устройство (HDD), которое хранит и извлекает данные с помощью магнитного накопителя. Это энергонезависимое запоминающее устройство, которое можно изменять или удалять n раз без каких-либо проблем. Большинство компьютеров и ноутбуков имеют жесткие диски в качестве вторичного запоминающего устройства. На самом деле это набор дисков, сложенных друг в друга, как грампластинки. На каждом жестком диске данные записываются электромагнитным способом по концентрическим кругам или, можно сказать, дорожкам, присутствующим на жестком диске, и с помощью головки, похожей на руку фонографа (но зафиксированной в определенном положении), для считывания информации, имеющейся на трек. Скорость чтения-записи жестких дисков не такая высокая, но приличная. Он колеблется от нескольких ГБ до нескольких и более ТБ.

(iii) Магнитная карта: это карта, на которой данные хранятся путем изменения или изменения магнетизма крошечных магнитных частиц на основе железа, присутствующих на ленте карты. Она также известна как считывающая карта. Он используется как пароль (для входа в дом или гостиничный номер), кредитная карта, удостоверение личности и т. д.

(iv) Кассета с лентой: она также известна как музыкальная кассета. Представляет собой прямоугольный плоский контейнер, в котором данные хранятся на аналоговой магнитной ленте. Обычно он используется для хранения аудиозаписей.

(v) SuperDisk: Его также называют LS-240 и LS-120. Он представлен корпорацией Imation и популярен среди OEM-компьютеров. Он может хранить данные до 240 МБ.

<р>3. Устройства флэш-памяти

(i) Pen Drive: он также известен как флэш-накопитель USB, включающий флэш-память со встроенным интерфейсом USB. Мы можем напрямую подключать эти устройства к нашим компьютерам и ноутбукам и считывать/записывать данные в них гораздо быстрее и эффективнее. Эти устройства очень портативны. Обычно он варьируется от 1 ГБ до 256 ГБ.

(ii) SSD: это означает твердотельный накопитель, запоминающее устройство большой емкости, такое как жесткие диски. Он более долговечен, поскольку не содержит оптических дисков внутри, как жесткие диски. Ему требуется меньше энергии по сравнению с жесткими дисками, он легкий и имеет в 10 раз более высокую скорость чтения и записи по сравнению с жесткими дисками. Но они также являются дорогостоящими. Хотя твердотельные накопители выполняют ту же функцию, что и жесткие диски, их внутренние компоненты сильно отличаются. В отличие от жестких дисков, твердотельные накопители не имеют движущихся частей, поэтому их называют твердотельными накопителями. Вместо хранения данных на магнитных пластинах твердотельные накопители хранят данные в энергонезависимой памяти. Поскольку в твердотельных накопителях нет движущихся частей, им не нужно «раскручиваться». Он колеблется от 150 ГБ до нескольких и более ТБ.

(iii) SD-карта: она известна как защищенная цифровая карта. Обычно он используется с электронными устройствами, такими как телефоны, цифровые камеры и т. д., для хранения больших данных. Он портативный, а размер SD-карты также небольшой, поэтому его можно легко поместить в электронные устройства. Он доступен в различных размерах, например 2 ГБ, 4 ГБ, 8 ГБ и т. д.

(iv) Карта памяти: обычно используется в цифровых камерах. принтеры, игровые приставки и т. д. Он также используется для хранения больших объемов данных и доступен в различных размерах. Чтобы использовать карту памяти на компьютере, вам потребуется отдельное устройство чтения карт памяти.

(v) Мультимедийная карта: также известна как MMC. Это интегральная схема, которая обычно используется в автомобильных радиоприемниках, цифровых камерах и т. д. Это внешнее устройство для хранения данных/информации.

<р>4. Оптические запоминающие устройства

Оптические устройства хранения также являются дополнительными устройствами хранения. Это съемное запоминающее устройство. Ниже приведены некоторые оптические запоминающие устройства:

  • CD-R: компакт-диск только для чтения. На этом типе компакт-дисков после записи данные не могут быть стерты. Он доступен только для чтения.
  • CD-RW: расшифровывается как чтение компакт-диска и запись. На этот тип компакт-диска вы можете легко записывать или стирать данные несколько раз.
  • DVD-R: цифровой универсальный диск только для чтения. В этом типе DVD после записи данные не могут быть стерты. Он доступен только для чтения. Обычно он используется для написания фильмов и т. д.
  • DVD-RW: расшифровывается как цифровой универсальный диск для чтения и записи. На этот тип DVD вы можете легко записывать или стирать данные несколько раз.

(iii) Диск Blu-ray: такой же, как CD и DVD, но емкость диска Blu-ray составляет до 25 ГБ. Для запуска диска Blu-ray вам понадобится отдельный ридер Blu-ray. Эта технология Blu-ray используется для чтения диска с помощью сине-фиолетового лазера, благодаря чему информация хранится в большей плотности с большей длиной волны.

<р>5. Облачное и виртуальное хранилище

В настоящее время вторичная память заменена на виртуальные или облачные устройства хранения. Мы можем хранить наши файлы и другие материалы в облаке, и данные хранятся до тех пор, пока мы платим за облачное хранилище. Есть много компаний, которые предоставляют облачные услуги, в основном Google, Amazon, Microsoft и т. д. Мы можем платить арендную плату за необходимое нам пространство и получать от этого множество преимуществ.Хотя на самом деле он хранится на физическом устройстве, расположенном в центрах обработки данных поставщика услуг, пользователь не взаимодействует с физическим устройством и его обслуживанием. Например, Amazon Web Services предлагает AWS S3 в качестве типа хранилища, в котором пользователи могут хранить данные виртуально, а не на физических жестких дисках. Такого рода инновации представляют собой передний край развития носителей данных.

Не знаете точно, для чего нужна компьютерная память и как она работает? Мы охватываем все основы, от того, что такое оперативная память, до того, как она работает и почему стоит получить обновление.

Почему так важна компьютерная память (ОЗУ)?

Оперативная память компьютера (ОЗУ) — один из наиболее важных компонентов, определяющих производительность вашей системы. Оперативная память дает приложениям место для хранения данных и доступа к ним на краткосрочной основе. В нем хранится информация, которую ваш компьютер активно использует, чтобы к ней можно было быстро получить доступ.

Чем больше программ запущено в вашей системе, тем больше вам потребуется. SSD (твердотельные накопители) также являются важными компонентами и помогут вашей системе достичь максимальной производительности.

Скорость и производительность вашей системы напрямую зависят от объема установленной оперативной памяти. Если в вашей системе слишком мало оперативной памяти, она может работать медленно и вяло. Но, с другой стороны, вы можете установить слишком много, практически не получая дополнительных преимуществ. Есть способы узнать, требуется ли вашему компьютеру больше памяти, и убедиться, что вы покупаете память, совместимую с другими компонентами вашей системы. Как правило, компоненты создаются в соответствии с высочайшими стандартами на момент производства, но с расчетом на то, что технологии будут продолжать меняться.

Чтобы пользователи не могли вставить несовместимую память, модули физически различаются для каждого поколения технологии памяти. Эти физические различия являются стандартными для всей индустрии памяти. Одна из причин общеотраслевой стандартизации памяти заключается в том, что производителям компьютеров необходимо знать электрические параметры и физическую форму памяти, которую можно установить в их компьютеры.

Что такое скорость и задержка ОЗУ?

Производительность оперативной памяти зависит от соотношения скорости и задержки. Хотя они тесно связаны, они не связаны так, как вы могли бы подумать. На базовом уровне задержка относится к временной задержке между вводом команды и доступностью данных. Понимание скорости и задержки оперативной памяти поможет вам лучше выбрать правильную оперативную память для установки в вашей системе в соответствии с вашими потребностями.

Что делает ОЗУ (память)?

Оперативная память позволяет вашему компьютеру выполнять множество повседневных задач, таких как загрузка приложений, работа в Интернете, редактирование электронных таблиц или запуск последней игры. Память также позволяет вам быстро переключаться между этими задачами, запоминая, где вы находитесь в одной задаче, когда переключаетесь на другую задачу. Как правило, чем больше у вас памяти, тем лучше.

Когда вы включаете компьютер и открываете электронную таблицу для ее редактирования, но сначала проверяете свою электронную почту, вы используете память несколькими способами. Память используется для загрузки и запуска приложений, таких как программа для работы с электронными таблицами, ответа на команды, таких как любые изменения, которые вы внесли в электронную таблицу, или переключения между несколькими программами, например, когда вы вышли из электронной таблицы, чтобы проверить электронную почту. Память почти всегда активно используется вашим компьютером. Если ваша система работает медленно или не отвечает, вам может потребоваться обновление памяти. Если вы считаете, что вам может понадобиться больше памяти, вы можете легко увеличить объем оперативной памяти вашего настольного компьютера или ноутбука самостоятельно.

В каком-то смысле память похожа на ваш рабочий стол. Это позволяет вам работать над различными проектами, и чем больше ваш стол, тем больше бумаг, папок и задач вы можете иметь одновременно. Вы можете быстро и легко получить доступ к информации, не заходя в картотеку (ваш накопитель). Когда вы закончите работу над проектом или уйдете на день, вы можете положить некоторые или все проекты в картотеку на хранение. Ваш накопитель (жесткий диск или твердотельный накопитель) — это шкаф для хранения документов, который работает вместе с вашим рабочим столом для отслеживания ваших проектов.

Что использует оперативную память?

Оперативная память используется для хранения информации, которую необходимо быстро использовать. Это означает, что открытие многих программ, запуск различных процессов или одновременный доступ к нескольким файлам, вероятно, будут использовать много оперативной памяти. Особенно сложные программы, такие как игры или программное обеспечение для дизайна, будут использовать большую часть оперативной памяти.

Нужно ли вам обновить оперативную память?

Являетесь ли вы геймером, дизайнером или просто хотите ускорить свой персональный компьютер, увеличение объема оперативной памяти — это простой и легкий способ повысить производительность вашей системы. Чтобы определить, какой тип памяти подходит для вашего компьютера, используйте Crucial® Advisor™ или System Scanner. Эти инструменты помогут вам определить, какие модули памяти совместимы с вашим компьютером, а также выбрать параметры, соответствующие вашим требованиям к скорости и бюджету.

© Micron Technology, Inc., 2017. Все права защищены. Информация, продукты и/или технические характеристики могут быть изменены без предварительного уведомления. Ни Crucial, ни Micron Technology, Inc. не несут ответственности за упущения или ошибки в типографике или фотографии. Micron, логотип Micron, Crucial и логотип Crucial являются товарными знаками или зарегистрированными товарными знаками Micron Technology, Inc. Все другие товарные знаки и знаки обслуживания являются собственностью соответствующих владельцев.

Изучите множество устройств, предназначенных для увеличения емкости вашего цифрового хранилища, и узнайте, как они работают.

Емкость хранилища больше не зависит от физической емкости вашего компьютера. Существует множество вариантов хранения ваших файлов при сохранении места на вашем компьютере, телефоне или планшете. Если ваши устройства работают медленно и на них не хватает места, вы можете выгрузить файлы на физическое устройство хранения. Или, что еще лучше, используйте лучшие технологии хранения и сохраняйте файлы в облаке.

Облачное хранилище

Хотя облачное хранилище не является устройством как таковым, оно является новейшим и наиболее универсальным типом хранилища для компьютеров. «Облако» — это не одно место или объект, а огромная коллекция серверов, размещенных в центрах обработки данных по всему миру. Когда вы сохраняете документ в облаке, вы сохраняете его на этих серверах.

Поскольку облачное хранилище хранит все в Интернете, оно не использует дополнительное хранилище вашего компьютера, что позволяет вам экономить место.

Облачное хранилище обеспечивает значительно большую емкость по сравнению с USB-накопителями и другими физическими устройствами. Это избавляет вас от необходимости просматривать каждое устройство в поисках нужного файла.

Хотя внешние жесткие диски и твердотельные накопители когда-то пользовались популярностью из-за их портативности, они также уступают облачным хранилищам. Не так много карманных внешних жестких дисков. Хотя они меньше и легче, чем внутренний накопитель компьютера, они все же являются осязаемыми устройствами. Облако, с другой стороны, может быть с вами где угодно, не занимая физического места и не подвергаясь физическим уязвимостям внешнего диска.

Внешние устройства хранения также были популярны как быстрое решение для передачи файлов, но они полезны только в том случае, если у вас есть доступ к каждому физическому устройству. Облачные вычисления процветают, поскольку многие предприятия теперь работают удаленно. Вполне вероятно, что вы не стали бы отправлять USB-накопитель за границу, чтобы отправить коллеге большой файл. Облачное хранилище действует как мост между удаленными работниками, что упрощает совместную работу на расстоянии.

Если вы забудете принести на встречу жесткий диск с важными документами, вы ничего не сможете сделать, кроме как вернуться и взять его. Если вы вообще сломаете или потеряете жесткий диск, маловероятно, что вы когда-нибудь вернете эти данные. Этих рисков не существует для облачного хранилища — ваши данные зарезервированы и доступны в любое время и в любом месте, если у вас есть доступ к Интернету.

Благодаря онлайн-файлам Dropbox вы можете получить доступ к любому файлу в своем аккаунте с рабочего стола, не занимая место на жестком диске. Это похоже на локальное хранение ваших файлов — только они не занимают место на вашем диске. Сохранение всех ваших файлов в Dropbox означает, что они всегда доступны в один клик. Вы можете получить к ним доступ с любого устройства с подключением к Интернету и мгновенно поделиться ими.

Внешние устройства хранения

Помимо носителей данных, содержащихся в компьютере, существуют также цифровые устройства хранения, которые являются внешними по отношению к компьютерам. Они обычно используются для увеличения емкости хранилища на компьютере, на котором мало места, обеспечения большей мобильности или упрощения передачи файлов с одного устройства на другое.

А если вы хотите перенести файлы с внешних дисков в облако, вы можете использовать резервное копирование на внешний диск и получать доступ к своим файлам из любого места.

Внешние жесткие и твердотельные диски

В качестве внешних дисков можно использовать как жесткие диски, так и твердотельные накопители. Как правило, они предлагают наибольшую емкость среди внешних вариантов: внешние жесткие диски предлагают до 20 ТБ хранилища и (по разумной цене) внешние твердотельные накопители предлагают до 8 ТБ хранилища.

Внешние жесткие и твердотельные диски работают точно так же, как и их внутренние аналоги. Большинство внешних накопителей можно подключить к любому компьютеру; они не привязаны к одному устройству, поэтому являются достойным решением для передачи файлов между устройствами.

Устройства флэш-памяти

Мы упоминали флэш-память ранее при обсуждении твердотельных накопителей. Устройство флэш-памяти содержит триллионы взаимосвязанных ячеек флэш-памяти, в которых хранятся данные. Эти ячейки содержат миллионы транзисторов, которые при включении и выключении представляют 1 и 0 в двоичном коде, что позволяет компьютеру считывать и записывать информацию.

Одним из наиболее узнаваемых типов устройств флэш-памяти является USB-накопитель.Эти небольшие портативные запоминающие устройства, также известные как флэш-накопители или карты памяти, долгое время были популярным выбором в качестве дополнительного хранилища данных на компьютере. Прежде чем обмениваться файлами в Интернете стало легко и быстро, USB-накопители были необходимы для простого перемещения файлов с одного устройства на другое. Однако их можно использовать только на устройствах с портом USB. Большинство старых компьютеров имеют USB-порт, но для новых может потребоваться адаптер.

В наши дни флэш-накопитель USB может вмещать до 2 ТБ. Они обходятся дороже за гигабайт, чем внешний жесткий диск, но преобладают как простое и удобное решение для хранения и передачи небольших файлов.

Помимо USB-накопителей, устройства флэш-памяти также включают SD и карты памяти, которые вы узнаете как носитель данных, используемый в цифровых камерах.

Оптические запоминающие устройства

Компакт-диски, DVD-диски и диски Blu-Ray используются не только для воспроизведения музыки и видео — они также служат устройствами хранения данных. В совокупности они называются оптическими запоминающими устройствами или оптическими носителями.

Двоичный код хранится на этих дисках в виде крошечных выпуклостей вдоль дорожки, которая по спирали идет наружу от центра диска. Когда диск работает, он вращается с постоянной скоростью, а лазер внутри дисковода сканирует неровности на диске. То, как лазер отражает или отскакивает от удара, определяет, представляет ли он 0 или 1 в двоичном формате.

DVD имеет более плотную спиральную дорожку, чем компакт-диск, что позволяет хранить на нем больше данных, несмотря на тот же размер, а в приводах DVD используется более тонкий красный лазер, чем в приводах компакт-дисков. DVD-диски также позволяют использовать двойной слой для дальнейшего увеличения их емкости. Blu-Ray вывел вещи на новый уровень, сохраняя данные на нескольких слоях с еще меньшими выпуклостями, которые требуют еще более тонкого синего лазера для их чтения.

  • CD-ROM, DVD-ROM и BD-ROM относятся к оптическим дискам, предназначенным только для чтения. Данные, записанные на них, являются постоянными и не могут быть удалены или перезаписаны. Вот почему их нельзя использовать в качестве личного хранилища. Вместо этого они обычно используются для программ установки программного обеспечения.
  • Диски формата CD-R, DVD-R и BD-R можно записывать, но нельзя перезаписывать. Любые данные, которые вы сохраните на чистом записываемом диске, будут постоянно храниться на этом диске. Таким образом, они могут хранить данные, но не так гибки, как другие устройства хранения.
  • CD-RW, DVD-RW и BD-RE можно перезаписывать. Это позволяет вам записывать на них новые данные и стирать с них ненужные данные сколько угодно. Их обогнали более новые технологии, такие как флэш-память, но CD-RW когда-то были лучшим выбором для внешнего хранилища. Большинство настольных компьютеров и многие ноутбуки оснащены дисководами для компакт-дисков или DVD-дисков.

CD может хранить до 700 МБ данных, DVD-DL — до 8,5 ГБ, а Blu-Ray — от 25 до 128 ГБ данных.

Диски

Хотя на данный момент они могут быть устаревшими, мы не можем обсуждать устройства хранения, не упомянув хотя бы скромную дискету, также известную как дискета. Дискеты были первыми широко доступными портативными съемными запоминающими устройствами. Вот почему большинство значков «Сохранить» выглядят именно так: они созданы по образцу дискеты. Они работают так же, как жесткие диски, но в гораздо меньших масштабах.

Емкость гибких дисков никогда не превышала 200 МБ до того, как CD-RW и флэш-накопители стали предпочтительными носителями информации. iMac был первым персональным компьютером, выпущенным без дисковода для гибких дисков в 1998 году. С этого момента более чем 30-летнее господство гибких дисков очень быстро пошло на убыль.

Хранение в компьютерных системах

Запоминающее устройство – это устройство, которое в основном используется для хранения данных. В каждом настольном компьютере, ноутбуке, планшете и смартфоне есть какое-то запоминающее устройство. Существуют также автономные внешние накопители, которые можно использовать на разных устройствах.

Хранилище необходимо не только для хранения файлов, но и для выполнения задач и приложений. Любой файл, который вы создаете или сохраняете на своем компьютере, сохраняется на запоминающем устройстве вашего компьютера. На этом устройстве хранения также хранятся все приложения и операционная система вашего компьютера.

По мере развития технологий устройства хранения данных также претерпели значительные изменения. В настоящее время устройства хранения данных бывают самых разных форм и размеров, и существует несколько различных типов устройств хранения данных, предназначенных для различных устройств и функций.

Запоминающее устройство также известно как носитель данных или носитель данных. Объем цифрового хранилища измеряется в мегабайтах (МБ), гигабайтах (ГБ) и, в наши дни, в терабайтах (ТБ).

Некоторые компьютерные запоминающие устройства могут хранить информацию постоянно, а другие — только временно. На каждом компьютере есть как первичная, так и вторичная память, при этом первичная память действует как кратковременная память компьютера, а вторичная — как долговременная память компьютера.

Основное хранилище: оперативная память (ОЗУ)

Оперативное запоминающее устройство, или ОЗУ, — это основное хранилище компьютера.

Когда вы работаете с файлом на своем компьютере, он временно сохраняет данные в вашей оперативной памяти. Оперативная память позволяет выполнять повседневные задачи, такие как открытие приложений, загрузка веб-страниц, редактирование документа или игра в игры. Это также позволяет вам переходить от одной задачи к другой, не теряя прогресса. По сути, чем больше объем оперативной памяти вашего компьютера, тем плавнее и быстрее вы сможете выполнять многозадачные задачи.

ОЗУ — это энергозависимая память, то есть в ней не может храниться информация после выключения системы. Например, если вы скопируете блок текста, перезагрузите компьютер, а затем попытаетесь вставить этот блок текста в документ, вы обнаружите, что ваш компьютер забыл скопированный текст. Это потому, что он был временно сохранен в вашей оперативной памяти.

Оперативная память позволяет компьютеру получать доступ к данным в случайном порядке и, таким образом, считывает и записывает их намного быстрее, чем дополнительная память компьютера.

Вторичное хранилище: жесткие диски (HDD) и твердотельные накопители (SSD)

Помимо оперативной памяти, на каждом компьютере есть еще один накопитель, который используется для долговременного хранения информации. Это вторичное хранилище. Любой файл, который вы создаете или загружаете, сохраняется во вторичном хранилище компьютера. В качестве вторичного хранилища в компьютерах используются два типа запоминающих устройств: HDD и SSD. В то время как жесткие диски являются более традиционными из двух, твердотельные накопители быстро обгоняют жесткие диски в качестве предпочтительной технологии для вторичного хранения.

Дополнительные устройства хранения часто являются съемными, поэтому вы можете заменить или обновить хранилище вашего компьютера или перенести свой накопитель на другой компьютер. Есть заметные исключения, например MacBook, в которых нет съемных носителей.

Жесткие диски (HDD)

Жесткий диск (HDD) — это исходный жесткий диск. Это магнитные запоминающие устройства, которые существуют с 1950-х годов, хотя со временем они совершенствовались.

Жесткий диск состоит из стопки вращающихся металлических дисков, известных как пластины. Каждый вращающийся диск состоит из триллионов крошечных фрагментов, которые можно намагничивать для представления битов (1 и 0 в двоичном коде). Приводной рычаг с головкой чтения/записи сканирует вращающиеся пластины и намагничивает фрагменты для записи цифровой информации на жесткий диск или обнаруживает магнитные заряды для считывания информации с него.

Жесткие диски используются для телерекордеров, серверов, а также для хранения данных на ноутбуках и ПК.

Твердотельные накопители (SSD)

Твердотельные накопители появились совсем недавно, в 90-х годах. SSD не полагаются на магниты и диски, вместо этого они используют тип флэш-памяти, называемый NAND. В SSD полупроводники хранят информацию, изменяя электрический ток цепей, содержащихся в накопителе. Это означает, что, в отличие от жестких дисков, для работы твердотельных накопителей не требуются движущиеся части.

Из-за этого твердотельные накопители не только работают быстрее и плавнее, чем жесткие диски (жестким дискам требуется больше времени для сбора информации из-за механической природы их пластин и головок), но и, как правило, служат дольше, чем жесткие диски (с таким количеством сложных движущихся частей, Жесткие диски уязвимы к повреждению и износу).

Помимо новых ПК и ноутбуков высокого класса, твердотельные накопители можно найти в смартфонах, планшетах и ​​иногда в видеокамерах.

Лучший способ хранения больших объемов данных

Если на ваших устройствах заканчивается свободное место, пора поискать альтернативное запоминающее устройство. Даже на внешних запоминающих устройствах, таких как флэш-накопители, может закончиться свободное место, они могут сломаться или потеряться. Вот почему лучший способ хранить все ваши файлы — в облаке. Это безопаснее, быстрее и проще.

Читайте также: