В какой системе исчисления компьютер хранит данные

Обновлено: 24.11.2024

Мартин имеет 20-летний опыт работы в области информационных систем и информационных технологий, имеет докторскую степень в области управления информационными технологиями и степень магистра в области управления информационными системами. Он адъюнкт-профессор компьютерных наук и компьютерного программирования.

Компьютеры могут хранить данные в цифровом виде двумя способами: в ОЗУ (оперативная память) и ПЗУ (постоянная память). Узнайте, как различные компоненты способствуют кэшированию и извлечению цифровой памяти. Обновлено: 28 декабря 2021 г.

Память и функции компьютера

Итак, что такое компьютерная память и почему она так важна?

Компьютерная память технически представляет собой любой тип электронного хранилища. Без него и без доступа к нему компьютер — просто бесполезная коробка. От запуска до завершения работы и всех промежуточных процессов компьютер использует несколько типов памяти для своей работы.

Место памяти в компьютере

На этой диаграмме показаны все входы/выходы и процессоры компьютера.

В основе компьютера лежит центральный процессор или ЦП, источник управления, который запускает все программы и инструкции. Для работы компьютеры используют два типа памяти: первичную и вторичную. Основная память — это первичная память, а данные и программы хранятся во вторичной памяти. Однако память не хранится в ЦП, а без нее ЦП был бы просто путаницей проводов!

Тем не менее, если бы у вас была память компьютера, у вас была бы большая способность забывать информацию! Это связано с тем, что большинство компьютеров используют так называемую оперативную память (ОЗУ). Эта память используется только тогда, когда компьютер выполняет задачу. Чтобы лучше понять это, представьте следующее:

Вы опытный садовник, за исключением одного важного недостатка. Каждый день, когда вы уходите из сада, все, что вы сделали в этот день, от посадки до прополки, стирается из вашей памяти. Но когда вы просыпаетесь на следующее утро, вас просят поработать в саду. По этой команде все воспоминания возвращаются, и вы начинаете трудиться. Когда день заканчивается, все снова забывается.

Сад, инструменты, семена и т. д. можно рассматривать как вторичную память в этой аналогии.

Память и хранилище

Хотя термины "память" и "ОЗУ" используются взаимозаменяемо, чаще всего используется оперативная память или ОЗУ, то есть данные, содержащие инструкции для обработки компьютерных операций: как незадачливый садовник, память используется только до тех пор, пока программа, нуждающаяся в этом, работает. Вот некоторые из причин, по которым компьютеру требуется память только для обработки:

  • Для запуска большинства программ компьютер должен быть включен; после отключения питания память стирается.
  • Ни одна программа не может использовать всю память. Одновременно работающие программы должны совместно использовать память, т. е. она разделена между этими программами.
  • Хранилище памяти может быть недостаточно большим для хранения данных обработки, поэтому оно освобождается по завершении.

Произошла ошибка при загрузке этого видео.

Попробуйте обновить страницу или обратитесь в службу поддержки.

Вы должны создать учетную запись, чтобы продолжить просмотр

Зарегистрируйтесь, чтобы просмотреть этот урок

Как участник, вы также получите неограниченный доступ к более чем 84 000 уроков по математике, английскому языку, естественным наукам, истории и многому другому. Кроме того, вы можете пройти пробные тесты, викторины и индивидуальные тренировки, которые помогут вам добиться успеха.

Получите неограниченный доступ к более чем 84 000 уроков.

Уже зарегистрированы? Войдите здесь для доступа

Ресурсы, созданные учителями для учителей

Вы в ударе. Продолжайте в том же духе!

Просто отмечаюсь. Вы все еще смотрите?

  • 0:04 Компьютерная память и функции
  • 2:57 Как компьютер использует память
  • 4:15 Кэширование и виртуальная память
  • 5:51 Резюме урока

Хотите посмотреть это позже?

Войдите или зарегистрируйтесь, чтобы добавить этот урок в собственный курс.

Как компьютер использует память

Оперативная память может быть наиболее распространенным названием компьютерной памяти; однако компьютеры будут использовать все типы в базовой иерархии.

После включения компьютер получает доступ к постоянной памяти (ПЗУ) и выполняет быструю проверку фрагментов памяти, чтобы убедиться в отсутствии ошибок. Далее компьютер запускает базовый ввод/вывод (BIOS) из ПЗУ. Операционная система запускается после того, как BIOS проходит процедуру запуска; операционная система загружается в оперативную память. Это дает центральному процессору быстрый доступ к операционной системе, повышая производительность и функциональность. ЦП обращается к этому в непрерывном цикле — и это происходит миллионы раз в секунду!

Однако Unified Extensible Firmware Interface (UEFI) представляет собой более современную версию BIOS. Он загружается быстрее, имеет больше графики и включает дополнительные функции безопасности.

Когда пользователь запускает приложение, например Microsoft Word, оно загружается в ОЗУ; после запуска любые файлы (из внутреннего или внешнего хранилища) также загружаются в оперативную память для использования программой. После сохранения и закрытия файла информация записывается в хранилище, а затем стирается из оперативной памяти. Как и в нашем примере с садом, все посажено и семена прорастают, но садовник не помнит, что он только что сделал.

Кэширование и виртуальная память

Хорошо, мы обсудили первичную и вторичную память, или ПЗУ и ОЗУ. Однако есть два дополнительных компонента, определяющих использование памяти на компьютерах: кэш-память и виртуальная память.

ЦП невероятно быстр: они обрабатывают данные намного быстрее, чем требуется для извлечения данных из памяти. Поэтому используется кэширование: данные мгновенно становятся доступными, создавая небольшие участки памяти, называемые кешем уровня 1. Обычно это очень маленький объем памяти.

Кэш 2-го уровня подключается напрямую к ЦП (он находится на карте памяти) и имеет большой размер. Около 95 % времени ЦП использует этот кеш, что сокращает время ожидания данных из основной памяти.

Виртуальная память

Виртуальная память, по сути, заставляет компьютер думать, что у него больше памяти, чем на самом деле. Это помогает компьютеру запускать огромные программы, которые не помещаются в ОЗУ. Тогда компьютер сможет поддерживать многозадачность: без этого мы не смогли бы одновременно использовать электронную таблицу, Twitter, редактор документов и калькулятор. Компьютеры могут создавать виртуальную память и обмениваться ею между программами (на самом деле файлы памяти называются файлами подкачки, а фрагменты памяти, которые обмениваются, называются страницами). Однако, если объем виртуальной памяти слишком велик, диску приходится больше работать для подкачки памяти, что может значительно снизить производительность.

Резюме урока

В этом уроке мы рассмотрели память и функции компьютера, а также описали, как компьютер использует память и обращается к ней: от включения до выключения компьютер использует кэшированную память, виртуальную память и оперативную память. Без памяти компьютер — это всего лишь коробка проводов, поскольку память является основным компонентом всех его функций.

Этот контент был заархивирован и больше не поддерживается Университетом Индианы. Информация здесь может быть неточной, а ссылки могут быть недоступны или ненадежны.

Примечание. Следующая информация частично предоставлена ​​проектом Extreme Science and Engineering Discovery Environment ( XSEDE ) Национального научного фонда (NSF), который предоставляет исследователям передовые цифровые ресурсы и услуги, облегчающие научные открытия. Дополнительную информацию см. на веб-сайте XSEDE.

Бит — это двоичная цифра, наименьший приращение данных на компьютере. Бит может содержать только одно из двух значений: 0 или 1, что соответствует электрическим значениям выключено или включено соответственно.

Поскольку биты очень малы, вы редко работаете с информацией по одному биту за раз. Биты обычно собираются в группу из восьми, чтобы сформировать байт. Байт содержит достаточно информации для хранения одного символа ASCII, например "h".

Килобайт (КБ) — это 1 024 байта, а не тысяча байтов, как можно было бы ожидать, потому что компьютеры используют двоичную систему (с основанием два) вместо десятичной (с основанием десять).

Хранилище и память компьютера часто измеряются в мегабайтах (МБ) и гигабайтах (ГБ). Роман среднего размера содержит около 1 МБ информации. 1 МБ – это 1 024 килобайта, или 1 048 576 (1024 x 1024) байт, а не миллион байт.

Точно так же один 1 ГБ равен 1024 МБ или 1 073 741 824 (1024 x 1024 x 1024) байт. Терабайт (ТБ) равен 1024 ГБ; 1 ТБ — это примерно такой же объем информации, как и все книги в большой библиотеке, или примерно 1610 компакт-дисков с данными. Петабайт (ПБ) равен 1024 ТБ. 1 ПБ данных, записанных на DVD, создаст примерно 223 100 DVD, т. е. стопку высотой около 878 футов или стопку компакт-дисков высотой в милю. Университет Индианы в настоящее время создает системы хранения, способные хранить петабайты данных. Эксабайт (ЭБ) равен 1024 ПБ. Зеттабайт (ZB) равен 1024 ЭБ. Наконец, йоттабайт (YB) равен 1024 ZB.

Многие производители жестких дисков используют десятичную систему счисления для определения объема дискового пространства.В результате 1 МБ определяется как один миллион байтов, 1 ГБ определяется как один миллиард байтов и так далее. Поскольку ваш компьютер использует двоичную систему, как указано выше, вы можете заметить несоответствие между опубликованной емкостью вашего жесткого диска и емкостью, подтвержденной вашим компьютером. Например, жесткий диск, который, как говорят, содержит 10 ГБ дискового пространства с использованием десятичной системы счисления, на самом деле способен хранить 10 000 000 000 байтов. Однако в двоичной системе 10 ГБ составляют 10 737 418 240 байт. В результате вместо подтверждения 10 ГБ ваш компьютер подтвердит 9,31 ГБ. Это не неисправность, а вопрос разных определений.

Мы считаем по основанию 10 по степеням 10:

Компьютеры считают по основанию 2:

Итак, на компьютерном жаргоне используются следующие единицы:

< /th> < td>1 048 576 байт

Примечание. Названия и сокращения для количества байтов легко спутать с обозначениями для битов. В сокращениях для количества битов используется строчная буква «b» вместо прописной «B». Поскольку один байт состоит из восьми битов, эта разница может быть значительной. Например, если рекламируется широкополосное подключение к Интернету со скоростью загрузки 3,0 Мбит/с, его скорость составляет 3,0 мегабита в секунду или 0,375 мегабайта в секунду (сокращенно 0,375 Мбит/с). Биты и скорости передачи данных (биты во времени, например, в битах в секунду [бит/с]) чаще всего используются для описания скорости соединения, поэтому уделяйте особое внимание при сравнении поставщиков и услуг подключения к Интернету.

Этот документ был разработан при поддержке грантов Национального научного фонда (NSF) 1053575 и 1548562. Любые мнения, выводы, выводы или рекомендации, выраженные в этом материале, принадлежат авторам и не обязательно отражают точку зрения НФС.

Компьютер — это программируемое устройство, которое может автоматически выполнять последовательность вычислений или других операций с данными, запрограммированными для выполнения задачи. Он может хранить, извлекать и обрабатывать данные в соответствии с внутренними инструкциями. Компьютер может быть цифровым, аналоговым или гибридным, хотя большинство современных компьютеров являются цифровыми. Цифровые компьютеры выражают переменные в виде чисел, обычно в двоичной системе. Они используются для общих целей, тогда как аналоговые компьютеры создаются для конкретных задач, обычно научных или технических. Термин "компьютер" обычно является синонимом цифрового компьютера, а компьютеры для бизнеса являются исключительно цифровыми.

ЭЛЕМЕНТЫ КОМПЬЮТЕРНОЙ СИСТЕМЫ

Основной вычислительной частью компьютера является его центральный процессор (ЦП) или процессор. Он состоит из арифметико-логического блока для выполнения вычислений, основной памяти для временного хранения данных для обработки и блока управления для управления передачей данных между памятью, источниками ввода и вывода и арифметико-логического блока. Однако компьютер не может полноценно функционировать без различных периферийных устройств. Обычно они подключаются к компьютеру с помощью кабелей, хотя некоторые из них могут быть встроены в один блок с ЦП. К ним относятся устройства для ввода данных, такие как клавиатуры, мыши, трекболы, сканеры, световые перья, модемы, считыватели карт с магнитной полосой и микрофоны, а также устройства для вывода данных, такие как мониторы, принтеры, плоттеры, громкоговорители, наушники и модемы. В дополнение к этим устройствам ввода/вывода другие типы периферийных устройств включают компьютерные устройства хранения данных для вспомогательной памяти, где данные сохраняются, даже когда компьютер выключен. Чаще всего это устройства на магнитной ленте, магнитных или оптических дисках.

Наконец, для автоматического функционирования цифрового компьютера требуются программы или наборы инструкций, написанные в машиночитаемом коде. Чтобы отличать программы от физических или аппаратных компонентов компьютера, все вместе они называются программным обеспечением.

Компьютерная система, таким образом, представляет собой компьютер, объединенный с периферийным оборудованием и программным обеспечением, чтобы он мог выполнять желаемые функции. Часто термины «компьютер» и «компьютерная система» используются взаимозаменяемо, особенно когда периферийные устройства встроены в тот же блок, что и компьютер, или когда система продается и устанавливается в виде пакета.Однако термин «компьютерная система» может также относиться к конфигурации аппаратного и программного обеспечения, разработанной для определенной цели, такой как система управления производством, система автоматизации библиотеки или система учета. Или это может относиться к сети из нескольких компьютеров, соединенных вместе, чтобы они могли совместно использовать программное обеспечение, данные и периферийное оборудование.

Компьютеры, как правило, классифицируются по размеру и мощности, хотя прогресс в вычислительной мощности компьютеров стирает различия между традиционными категориями. На мощность и скорость влияет размер внутренних запоминающих устройств компьютера, называемых словами, которые определяют объем данных, которые он может обрабатывать за один раз, и измеряются в битах (двоичных цифрах). Скорость компьютера также определяется его тактовой частотой, которая измеряется в мегагерцах. Кроме того, объем оперативной памяти компьютера, который измеряется в байтах (или, точнее, в килобайтах, мегабайтах или гигабайтах) ОЗУ (оперативной памяти), играет роль в определении того, сколько данных он может обработать. Объем памяти, который могут хранить вспомогательные запоминающие устройства, также определяет возможности компьютерной системы.

МИКРОКОМПЬЮТЕР

Разработка микропроцессора, центрального процессора на одном кристалле интегральной схемы, впервые позволила разработать доступные однопользовательские микрокомпьютеры. Однако низкая вычислительная мощность первых микрокомпьютеров делала их привлекательными только для любителей, а не для коммерческого рынка. Однако в 1977 году индустрия персональных компьютеров начала развиваться с появлением готовых домашних компьютеров от трех производителей.

Термин "персональный компьютер" (ПК) был придуман компанией IBM с выпуском своего ПК в 1981 году. Эта модель мгновенно завоевала успех и установила стандарт для индустрии микрокомпьютеров. К началу 1990-х персональные компьютеры стали самой быстрорастущей категорией компьютеров. Во многом это было связано с принятием их использования в предприятиях всех размеров. Доступность этих небольших недорогих компьютеров позволила использовать компьютерные технологии даже на самых маленьких предприятиях.

Последней категорией микрокомпьютеров, появившихся в деловом мире, являются портативные компьютеры. Эти маленькие и легкие, но все более мощные компьютеры широко известны как портативные компьютеры или портативные компьютеры. Портативные компьютеры имеют ту же мощность, что и настольные персональные компьютеры, но имеют более компактную конструкцию и используют мониторы с плоским экраном, обычно с жидкокристаллическим дисплеем, которые складываются, образуя тонкий блок, который помещается в портфель и обычно весит менее 15 фунтов. Ноутбук весит менее 6 фунтов и может иметь или не иметь полноразмерную клавиатуру. Карманный компьютер представляет собой портативный компьютер размером с калькулятор. Персональный цифровой помощник — это карманный компьютер, который использует для ввода перо и планшет, имеет карту факса/модема и сочетает в себе возможности сотового телефона для удаленной передачи данных. Портативные компьютеры становятся все более популярными среди путешествующих деловых людей, таких как руководители или торговые представители.

Открытые системы

Сегодня большинство компьютерных систем являются «открытыми» — совместимыми с компьютерным оборудованием и программным обеспечением разных производителей. В прошлом все компоненты компьютерной системы производились одним и тем же производителем. Общеотраслевых стандартов не существовало. В результате принтеры, мониторы и другое периферийное оборудование одного производителя не будут работать при сопряжении с компьютером другого производителя. Что еще более важно, программное обеспечение могло работать только на той конкретной марке компьютера, для которой оно было разработано. Однако сегодня широко распространены «открытые системы», в которых различное оборудование от разных производителей может быть согласовано друг с другом. Открытые системы особенно популярны среди владельцев малого бизнеса, потому что они позволяют предприятиям легче и дешевле обновлять или расширять свои компьютерные системы. Открытые системы предоставляют владельцам бизнеса больше возможностей для покупки, позволяют им свести к минимуму расходы на переобучение сотрудников новым системам и дают им больше свободы для обмена компьютерными файлами с внешними клиентами или поставщиками.

Сеть

Компьютеры в сети физически связаны кабелями и используют сетевое программное обеспечение в сочетании с программным обеспечением операционной системы. В зависимости от используемого аппаратного и программного обеспечения в одну и ту же сеть могут быть включены компьютеры разных типов. Это могут быть компьютеры разных размеров, такие как мейнфреймы, средние компьютеры и микрокомпьютеры, или компьютеры и периферийные устройства разных производителей, чему способствует тенденция к открытым системам. Локальные сети (LAN) связывают компьютеры в пределах ограниченной географической области, а глобальные сети (WAN) соединяют компьютеры в разных географических регионах. Сети могут иметь различную архитектуру, которая определяет, могут ли компьютеры в сети действовать независимо.Обычно используется архитектура системы клиент-сервер, при которой серверный компьютер назначается для хранения и обработки данных, и доступ к нему осуществляется несколькими пользователями, каждый из которых находится на клиентском компьютере.

Локальные сети изменили то, как сотрудники организации используют компьютеры. В организациях, где сотрудники раньше получали доступ к компьютерам среднего уровня через «тупые» терминалы, теперь эти сотрудники обычно имеют больше возможностей. У этих пользователей есть свои персональные компьютеры на своих рабочих местах, но они по-прежнему могут получать доступ к необходимым данным со среднего или другого сервера через сеть. В то время как малые предприятия обычно предпочитают локальные сети, глобальные сети часто используются компаниями с несколькими объектами, расположенными в обширной географической зоне. В конце концов, в системе WAN к базам данных компании можно получить доступ из штаб-квартиры в одном городе, на заводе-изготовителе в другом городе и в офисах продаж в других местах.

КОМПЬЮТЕРНОЕ ИСПОЛЬЗОВАНИЕ

Компьютеры используются в правительстве, промышленности, некоммерческих и неправительственных организациях, а также дома, но наибольшее влияние они оказали на бизнес и промышленность. Конкурентная природа бизнеса создала потребность в непрерывном развитии компьютерных технологий и проектирования систем. Между тем, снижение цен на компьютерные системы и их растущая мощность и полезность привели к тому, что все больше и больше предприятий инвестируют в компьютерные системы для все более широкого круга бизнес-функций. Сегодня компьютеры используются для обработки данных во всех аспектах деятельности предприятия: проектирование и разработка продуктов, производство, управление запасами и распределение, контроль качества, продажи и маркетинг, данные об услугах, бухгалтерский учет и управление персоналом. Они также используются в компаниях любого размера и во всех отраслевых сегментах, включая производство, оптовую и розничную торговлю, услуги, горнодобывающую промышленность, сельское хозяйство, транспорт и связь.

Наиболее распространенными видами использования компьютерной системы в бизнесе являются управление базами данных, управление финансами и бухгалтерский учет, а также обработка текстов. Компании используют системы управления базами данных для отслеживания изменяющейся информации в базах данных по таким темам, как клиенты, поставщики, сотрудники, запасы, поставки, заказы на продукцию и запросы на обслуживание. Финансовые и бухгалтерские системы используются для различных математических расчетов с большими объемами числовых данных, будь то в основных функциях компаний, предоставляющих финансовые услуги, или в бухгалтерской деятельности фирм. Тем временем компьютеры, оснащенные программным обеспечением для управления электронными таблицами или базами данных, используются отделами кредиторской и дебиторской задолженности и расчетом заработной платы для обработки и табулирования финансовых данных и анализа ситуации с денежными потоками. Наконец, обработка текстов распространена повсеместно и используется для создания широкого спектра документов, включая внутренние записки, переписку с внешними организациями, материалы по связям с общественностью и продукты (в издательской, рекламной и других отраслях).

Базы данных также могут использоваться для принятия стратегических решений с помощью программного обеспечения на основе искусственного интеллекта. Система базы данных может включать — в дополнение к записям и статистическим данным о продуктах, услугах, клиентах и ​​т. д. — информацию о прошлом человеческом опыте в определенной области. Это называется базой знаний. Примеры использования экспертной системы включают действия по бизнес-прогнозированию, такие как инвестиционный анализ, финансовое планирование, страхование и прогнозирование рисков мошенничества. Экспертные системы также используются в деятельности, связанной с соблюдением нормативных требований, проведением торгов, сложным производственным контролем, поддержкой клиентов и обучением.

КОМПЬЮТЕРНЫЕ СИСТЕМЫ И МАЛЫЙ БИЗНЕС

Стратегия компании

"Привычно рассматривать технологию компьютерных систем как самостоятельную единицу, тогда как на самом деле ее следует рассматривать как один из более масштабных и широко используемых бизнес-инструментов", – пишет Ричард Хенсли в Цинциннати Бизнес Курьер. «[Технология компьютерных систем] является инструментом, имеющим решающее значение для достижения общей корпоративной стратегии». Хотя она вполне может существовать в сознании владельца, многие малые и средние компании не имеют подробной письменной системной стратегии. В таком случае это неудивительно. , что многие решения по внедрению системных технологий являются более реактивными, чем стратегически обоснованными. Конкурентное давление, необходимость догнать рынок и внутренний рост, как правило, заставляют принимать решения о покупке». Вместо этого решения о покупке системы следует использовать заранее, чтобы оценить общие стратегии и оценить эффективность текущих операционных процессов.

Потребности клиентов

Владельцы бизнеса также должны убедиться, что выбранная ими компьютерная система соответствует потребностям клиентов. Является ли постоянное общение с клиентами важным компонентом вашего бизнеса? Если это так, то ваша система должна быть оснащена функциями, которые позволят вам и вашему клиенту общаться через компьютер своевременно и эффективно.Зависит ли здоровье вашего бизнеса от обработки заказов клиентов и выставления счетов? Если это так, убедитесь, что ваша система легко справляется с такими требованиями.

Потребности в рабочей силе

Внедряя новую компьютерную систему или внося изменения в существующую, предприятия неизбежно меняют методы работы своих сотрудников, и этот фактор необходимо учитывать. «Нередко возникает некоторое сопротивление со стороны сотрудников, которые не хотят мириться с отходом от статус-кво», — сказал Хенсли. «Такое сопротивление часто можно значительно уменьшить, вовлекая затронутых сотрудников в разработку или модификацию системы. Они могут предоставить практическую информацию о том, что хорошо работает в текущей системе, а что нет. После того, как изменения были реализованы , создать программу обучения и структуру поддержки для всех пользователей. Это максимизирует преимущества системы и лучше подготовит сотрудников для достижения результатов, ожидаемых от изменений». Кроме того, компаниям необходимо обеспечить разумное распространение компьютерных технологий. Компьютеры следует распределять по потребностям, а не по ранжированию.

Общая стоимость владения

Многие малые предприятия не учитывают накопленные затраты, связанные с различными компьютерными системами, при принятии решений об оборудовании. В дополнение к первоначальной цене компаниям необходимо взвесить скрытые затраты на информационные технологии, связанные с покупкой. Эти расходы, известные как совокупная стоимость владения (TCO), включают техническую поддержку, административные расходы, расточительные пользовательские операции и дополнительные расходы (расходы на чернила и бумагу для принтера, электроэнергию и т. д.). Еще одним фактором, который следует учитывать, является срок службы оборудования. В конце концов, как заметил Хенсли, «для обеспечения способности производить соответствующую информацию технологические системы требуют запланированных инвестиций». Владельцы бизнеса, которые игнорируют эту реальность, делают это на свой страх и риск, считают эксперты. «Когда дело доходит до сокращения расходов, одним из ваших первых побуждений может быть желание сохранить свои ПК как можно дольше, полагая, что чем меньше денег вы потратите на новые технологии, тем лучше», — написала Хизер Пейдж в Entrepreneur<. /эм>. Однако на самом деле такие рассуждения в конечном итоге увеличивают издержки бизнеса. «Наличие нескольких поколений аппаратного обеспечения, программного обеспечения и операционных систем усложняет среду вашего ПК, тем самым увеличивая ваши расходы», — пояснил Пейдж. «Вы должны не только поддерживать технические знания в области старых технологий, но также должны найти способы, чтобы старое оборудование работало с новыми технологиями, и разрабатывать все свои собственные приложения для поддержки нескольких сред».

Учитывая сегодняшнюю быстро меняющуюся бизнес-среду, обновление системы стало реальностью. Как отметил Джоэл Дрейфус в журнале Fortune, «если на ваших служебных компьютерах нет новейшего и (всегда) лучшего программного и аппаратного обеспечения, ваши поставщики и сотрудники могут заставить вас почувствовать, что вы всего лишь один из них». отойди от гусиных перьев и пергамента». Но инициативы по обновлению не должны одобряться импульсивно. Вместо этого владельцы бизнеса и менеджеры должны провести соответствующий анализ затрат и результатов, взвесив такие вопросы, как затраты на установку и обучение, совместимость с другими системами, полезность новых функций и текущую способность удовлетворять потребности бизнеса, прежде чем инвестировать в крупные обновления компьютерной системы.< /p>

БИБЛИОГРАФИЯ

Кодкинд, Алан. «Автоматизация бизнес-процессов». CMA — журнал по управленческому учету. Октябрь 1993 г.

Дрейфус, Джоэл. «ФСБ/Малый бизнес». Удача. 13 ноября 2000 г.

Хенсли, Ричард. «Затруднение владельца: сколько потратить на новую технологию?» Цинциннати Бизнес Курьер. 3 марта 1997 г.

Пейдж, Хизер. "Какая цена ПК?" Предприниматель. Октябрь 1997 г.

«Модели использования в малых фирмах». Дело нации. Август 1993 г.

Смит, Сэнди. «Умный способ инвестировать в компьютеры». Бухгалтерский журнал. Май 1997 г.

Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

Компьютер — это машина, которая может хранить и обрабатывать информацию. Большинство компьютеров полагаются на двоичную систему, в которой используются две переменные, 0 и 1, для выполнения таких задач, как хранение данных, расчет алгоритмов и отображение информации. Компьютеры бывают разных форм и размеров: от карманных смартфонов до суперкомпьютеров весом более 300 тонн.

Многим людям на протяжении всей истории приписывают разработку ранних прототипов, которые привели к созданию современного компьютера. Во время Второй мировой войны физик Джон Мочли, инженер Дж. Преспер Эккерт-младший., и их коллеги из Пенсильванского университета разработали первый программируемый электронный цифровой компьютер общего назначения, электронный числовой интегратор и компьютер (ENIAC).

По состоянию на ноябрь 2021 года самым мощным компьютером в мире является японский суперкомпьютер Fugaku, разработанный компаниями RIKEN и Fujitsu. Он использовался для моделирования симуляций COVID-19.

Популярные современные языки программирования, такие как JavaScript и Python, работают с несколькими формами парадигм программирования. Функциональное программирование, использующее математические функции для получения выходных данных на основе введенных данных, является одним из наиболее распространенных способов использования кода для предоставления инструкций для компьютера.

Самые мощные компьютеры могут выполнять чрезвычайно сложные задачи, такие как моделирование экспериментов с ядерным оружием и прогнозирование изменения климата. Разработка квантовых компьютеров, машин, способных выполнять большое количество вычислений посредством квантового параллелизма (полученного из суперпозиции), позволит выполнять еще более сложные задачи.

Способность компьютера обретать сознание — широко обсуждаемая тема. Некоторые утверждают, что сознание зависит от самосознания и способности мыслить, а это означает, что компьютеры обладают сознанием, потому что они распознают свое окружение и могут обрабатывать данные. Другие считают, что человеческое сознание никогда не может быть воспроизведено физическими процессами. Прочитайте точку зрения одного исследователя.

компьютер, устройство для обработки, хранения и отображения информации.

Компьютер когда-то означал человека, выполняющего вычисления, но теперь этот термин почти повсеместно относится к автоматизированному электронному оборудованию. Первый раздел этой статьи посвящен современным цифровым электронным компьютерам, их конструкции, составным частям и приложениям. Второй раздел посвящен истории вычислительной техники. Подробную информацию об архитектуре компьютера, программном обеспечении и теории см. в см. информатике.

Основы вычислений

Первые компьютеры использовались в основном для численных расчетов. Однако, поскольку любая информация может быть закодирована в числовом виде, люди вскоре поняли, что компьютеры способны обрабатывать информацию общего назначения. Их способность обрабатывать большие объемы данных расширила диапазон и точность прогнозов погоды. Их скорость позволяет им принимать решения о маршрутизации телефонных соединений через сеть и управлять механическими системами, такими как автомобили, ядерные реакторы и роботизированные хирургические инструменты. Они также достаточно дешевы, чтобы их можно было встроить в бытовые приборы и сделать сушилки для белья и рисоварки «умными». Компьютеры позволили нам ставить вопросы и отвечать на них, на которые раньше нельзя было ответить. Эти вопросы могут касаться последовательностей ДНК в генах, моделей поведения на потребительском рынке или всех случаев употребления слова в текстах, хранящихся в базе данных. Компьютеры все чаще могут обучаться и адаптироваться во время работы.

Компьютеры также имеют ограничения, некоторые из которых носят теоретический характер. Например, существуют неразрешимые утверждения, истинность которых не может быть определена в рамках заданного набора правил, таких как логическая структура компьютера. Поскольку не может существовать универсального алгоритмического метода для идентификации таких утверждений, компьютер, которому нужно получить истинность такого утверждения, будет (если его принудительно не прервать) продолжать работу бесконечно — состояние, известное как «проблема остановки». (См. Машина Тьюринга.) Другие ограничения отражают современные технологии. Человеческий разум способен распознавать пространственные структуры — например, легко различать человеческие лица, — но это сложная задача для компьютеров, которые должны обрабатывать информацию последовательно, а не схватывать детали в целом с первого взгляда. Еще одна проблемная область для компьютеров связана с взаимодействием на естественном языке. Поскольку в обычном человеческом общении предполагается так много общих знаний и контекстуальной информации, исследователям еще предстоит решить проблему предоставления релевантной информации универсальным программам на естественном языке.

Аналоговые компьютеры

Аналоговые компьютеры используют непрерывные физические величины для представления количественной информации. Сначала они представляли величины с помощью механических компонентов (см. дифференциальный анализатор и интегратор), но после Второй мировой войны стали использоваться напряжения; к 1960-м годам цифровые компьютеры в значительной степени заменили их. Тем не менее аналоговые компьютеры и некоторые гибридные цифро-аналоговые системы продолжали использоваться в течение 1960-х годов для решения таких задач, как моделирование самолетов и космических полетов.

Одним из преимуществ аналоговых вычислений является то, что спроектировать и построить аналоговый компьютер для решения одной задачи может быть относительно просто. Другое преимущество заключается в том, что аналоговые компьютеры часто могут представлять и решать проблему в «реальном времени»; то есть вычисления выполняются с той же скоростью, что и моделируемая ими система.Их основные недостатки заключаются в том, что аналоговые представления имеют ограниченную точность — обычно несколько знаков после запятой, но меньше в сложных механизмах, — а устройства общего назначения дороги и их нелегко запрограммировать.

Цифровые компьютеры

В отличие от аналоговых компьютеров, цифровые компьютеры представляют информацию в дискретной форме, как правило, в виде последовательностей нулей и единиц (двоичных цифр или битов). Современная эра цифровых компьютеров началась в конце 1930-х — начале 1940-х годов в США, Великобритании и Германии. В первых устройствах использовались переключатели, управляемые электромагнитами (реле). Их программы хранились на перфоленте или картах, и у них было ограниченное внутреннее хранилище данных. Исторические события см. см. в разделе Изобретение современного компьютера.

Мейнфрейм

В 1950-х и 60-х годах Unisys (производитель компьютера UNIVAC), International Business Machines Corporation (IBM) и другие компании производили большие и дорогие компьютеры все большей мощности. Они использовались крупными корпорациями и государственными исследовательскими лабораториями, как правило, в качестве единственного компьютера в организации. В 1959 году компьютер IBM 1401 сдавался в аренду за 8000 долларов в месяц (ранние машины IBM почти всегда сдавались в аренду, а не продавались), а в 1964 году самый большой компьютер IBM S/360 стоил несколько миллионов долларов.

Эти компьютеры стали называть мейнфреймами, хотя этот термин не стал общепринятым, пока не были построены компьютеры меньшего размера. Мэйнфреймы характеризовались наличием (для своего времени) больших объемов памяти, быстрых компонентов и мощных вычислительных возможностей. Они были очень надежны, и, поскольку они часто обслуживали жизненно важные потребности в организации, они иногда разрабатывались с избыточными компонентами, которые позволяли им выдерживать частичные отказы. Поскольку это были сложные системы, ими управлял штат системных программистов, которые одни имели доступ к компьютеру. Другие пользователи отправили «пакетные задания» для запуска на мейнфрейме по одному.

Такие системы остаются важными и сегодня, хотя они больше не являются единственным или даже основным центральным вычислительным ресурсом организации, которая обычно имеет сотни или тысячи персональных компьютеров (ПК). В настоящее время мейнфреймы обеспечивают хранение данных большой емкости для серверов Интернета или, благодаря методам разделения времени, они позволяют сотням или тысячам пользователей одновременно запускать программы. Из-за их текущих ролей эти компьютеры теперь называются серверами, а не мейнфреймами.

Читайте также:

Единица Эквивалент
1 килобайт (КБ) 1024 байта
1 мегабайт (МБ)
1 гигабайт (ГБ) 1 073 741 824 байта
1 терабайт (ТБ) ) 1 099 511 627 776 байт
1 петабайт (ПБ) 1 125 899 906 842 624 байт