Основные компоненты принципов пакетной передачи данных в компьютерных сетях

Обновлено: 04.07.2024

Здесь мы рассмотрим самые основные функции сети и пакетов.

Сеть

  • Компьютерные сети похожи на телефонную систему для компьютеров.
  • Компьютер выполняет "вызов" для обмена данными с другим компьютером.
  • Общение всегда осуществляется только байтами
  • Стоит знать основы, поскольку вы постоянно пользуетесь сетью
  • Когда вы просыпаетесь, сколько времени проходит перед использованием сети?

Компьютерные сети сложны в деталях, но основные идеи того, как все это работает, удивительно просты, и это то, что мы собираемся изучить.

LAN — локальная сеть

  • Начните с малого.
  • LAN – локальная сеть
  • Один дом, один этаж здания
  • Позже покажите масштабирование до всемирной сети Интернет.
  • Две суперпопулярные технологии локальных сетей:
    – Ethernet, проводная локальная сеть;
    – Wi-Fi, беспроводная локальная сеть.

Мы начнем с технологии LAN (локальной сети) — подключения от 2 до 50 компьютеров в доме или на одном этаже здания.

Локальная сеть Ethernet — пропускная способность

  • Очень популярная технология проводных локальных сетей, 1974 г.
  • Провода толщиной с соломинку.
  • Максимальная длина провода – 100 метров.
  • Провода часто желтые или синие.
  • Разъем RJ-45, как у большого телефонного разъема.
  • скорость пропускной способности — бит в секунду
  • Обычные значения пропускной способности:
    – 100 мегабит, 100 миллионов бит в секунду, или 100 Мбит/с
    – 1 гигабит, 1 миллиард бит в секунду, или 1 Гбит/с, 1000 Мбит/с.
  • путаница с буквой "b" - обратите внимание, что "mbps" и "gbps" относятся к битам, а не к байтам
  • Скорость передачи данных обычно указывается в битах в секунду, как указано выше.

разъем Ethernet rj45


Разъем Ethernet RJ45

маршрутизатор с подключенными кабелями Ethernet


Кабели Ethernet, подключенные к задней панели маршрутизатора Wi-Fi (Linksys WRT54g)

Ethernet — чрезвычайно распространенный и влиятельный стандарт проводных локальных сетей, поэтому мы начнем с него. Длина кабеля Ethernet обычно ограничена 100 метрами в соответствии с его «местной» ориентацией. Типичное приложение LAN представляет собой объединение в сеть компьютеров в одной комнате или на одном этаже здания. Наиболее распространенной формой подключения Ethernet является 100base-T (100 мегабит) с разъемами RJ-45 на концах. Разъем RJ-45 размером с мизинец напоминает широкий штекер телефонного провода.

Пакеты — данные отсюда туда

  • напр. отправить файл изображения между компьютерами, подключенными к сети Ethernet
  • Это вариант локальной сети с одним переходом (позже масштабирование до всего мира)
  • напр. 50 КБ изображение.jpg
  • 50 000 байт
  • Как отправить файл image.jpg по сети?
  • Использовать пакеты
  • Разделить байты файла image.jpg на пакеты
  • Скажем, каждый пакет имеет размер 1500 байт (варьируется)
  • Затем файл image.jpg делится примерно на 32 пакета.
  • Сеть передает по одному пакету за раз

пакеты, передаваемые по сети

Мы начнем с простейшего случая, когда два компьютера подключены кабелем Ethernet, и мы хотим отправить файл изображения в формате jpeg размером 50 КБ с одного компьютера на другой. Это случай «одного перехода». Сеть между двумя компьютерами, разделенными только кабелем Ethernet. Позже мы масштабируем это до случая полного Интернета с двумя компьютерами, расположенными в разных частях мира. Первый вопрос: как байты файла изображения на одном компьютере отправляются на другой компьютер по кабелю Ethernet (или по Wi-Fi)?

Для передачи 50 КБ изображения разбиваются на пакеты. Пакет является естественной единицей передачи в сети. В этом случае, скажем, каждый пакет имеет размер около 1500 байт (типичный размер пакета), тогда байты изображения размером 50 КБ можно разделить примерно на 32 пакета по 1500 байт каждый. Не обязательно, чтобы все пакеты были одинакового размера, просто каждый байт изображения отправляется в том или ином пакете.

Ethernet — отправка одного пакета

  • Посмотрите на передачу одного 1500-байтового пакета
  • Каждый байт состоит из 8 бит, например. 0 1 1 0 1 0 1 0
  • 1500 байт * 8 бит на байт = всего 12 000 бит
  • Отправить каждый байт (небольшое упрощение):
    -Пройтись по всем битам, слева направо
    -На каждую 1 подать 3 вольта на провод
    -На каждый 0, подайте на провод 0 вольт
  • Чтобы получить пакет:
    -Следуйте схеме 3 вольт / 0 вольт, поступающих по проводу
    - Соберите 0 и 1 в группы по 8, чтобы получить каждый байт
  • цифровая передача — только 0 и 1
  • Двигается со скоростью около 2/3 скорости света (варьируется)

Ethernet предоставляет основные средства для передачи пакетов между двумя компьютерами, соединенными кабелем Ethernet. Скажем, у нас есть пакет из 1500 байт информации, которую мы хотим отправить. Каждый байт состоит из 8 бит, поэтому нужно отправить 12 000 бит, где каждый бит равен 0 или 1. Вот упрощенное описание того, как это работает: кабель Ethernet состоит из двух проводов, соединяющих компьютеры. Отправляющий компьютер мог считывать 12000 бит по порядку, и для каждого 1 бита между проводами помещалось 3 вольта, а для каждого 0 бита между проводами помещалось 0 вольт. Принимающий компьютер может следить за ходом, отмечая последовательность 3В/0В на проводах с течением времени, и таким образом получает 12000 бит. На самом деле самый последний Ethernet содержит 4 пары проводов и поддерживает отправку информации в обоих направлениях и с более сложной схемой напряжения. Однако этот шаблон прохождения битов и изменения напряжения для «отправки» каждого бита, по сути, и является тем, как все это работает.

Контрольная сумма и ошибки

  • контрольные суммы обнаруживают ошибки передачи
  • Разрешить получателю определять правильность получения пакета
  • Пример схемы контрольной суммы:
    -Каждый байт представляет собой число от 0 до 255.
    -Отправитель складывает все байты пакета, скажем, сумма 157231.
    -Возьмите последние 2 цифры, 31. , как "контрольная сумма" пакета
    -Отправитель добавляет байт контрольной суммы в конец пакета
    -Получатель: суммирует полученные байты, проверяет совпадение контрольной суммы
    Контрольная сумма не совпадает указывает на повреждение данных
    Получатель просит отправителя повторно отправить этот пакет
  • Очень вероятно обнаружение ошибок
  • Не идеально — 2 ошибки могут свести на нет
  • Используемые схемы контрольных сумм лучше, чем просто сумма
  • Контрольные суммы используются очень широко:
    ethernet, USB, Wi-Fi, . все!
  • Вот как ваши файлы передаются правильно
  • Вспомните аналого-цифровую тему: когда данные представляют собой числа, многие полезные алгоритмы становятся простыми. Еще одним примером являются контрольные суммы.

добавить байты пакета для получения контрольной суммы

Пример контрольной суммы пакета:

Каждый пакет содержит дополнительные байты контрольной суммы, поэтому получатель пакета может определить, не были ли повреждены некоторые биты в пакете при передаче. Простым примером схемы контрольной суммы может быть: пройтись по всем байтам и сложить их все. Контрольная сумма — это последние 2 цифры суммы всех байтов; отправить эту контрольную сумму как дополнительный байт вместе с остальными данными пакета. Получатель может выполнить то же вычисление — сложить все байты — чтобы убедиться, что они получают одинаковую контрольную сумму. Фактический алгоритм контрольной суммы более сложен, чем простое сложение байтов, и более способен обнаруживать ошибки. Контрольная сумма вероятностная, не выявляющая 100% ошибок; существует микроскопическая вероятность того, что ошибка произойдет, но контрольная сумма ее не уловит.

Контрольная сумма позволяет получателю заметить, что пакет не прошел должным образом, и заставить отправителя повторно отправить этот пакет. Большинство пакетов проходят нормально, но повторная отправка нескольких пакетов происходит постоянно. Таким образом, когда вы отправляете файл JPEG из одного места в другое, он проходит правильно, вплоть до последнего бита.


Компьютерные сети имеют общие устройства, функции и возможности, включая серверы, клиенты, средства передачи, общие данные, общие принтеры и другие аппаратные и программные ресурсы, карту сетевого интерфейса (NIC), локальную операционную систему (LOS) и сеть. операционная система (NOS).

Серверы. Серверы — это компьютеры, на которых хранятся общие файлы, программы и сетевая операционная система. Серверы предоставляют доступ к сетевым ресурсам всем пользователям сети. Существует множество различных типов серверов, и один сервер может выполнять несколько функций. Например, есть файловые серверы, серверы печати, почтовые серверы, коммуникационные серверы, серверы баз данных, факс-серверы и веб-серверы, и это лишь некоторые из них. Иногда его также называют хост-компьютером. Серверы — это мощные компьютеры, на которых хранятся данные или приложения и которые подключаются к ресурсам, которые совместно используются пользователем в сети.

Клиенты. Клиенты — это компьютеры, которые получают доступ и используют сеть и общие сетевые ресурсы. Клиентские компьютеры в основном являются клиентами (пользователями) сети, поскольку они запрашивают и получают услуги от серверов. В наши дни клиентом обычно является персональный компьютер, который пользователи также используют для своих несетевых приложений.

Среда передачи. Среда передачи — это средства, используемые для соединения компьютеров в сети, такие как витая пара, коаксиальный кабель и оптоволоконный кабель. Среду передачи иногда называют каналами среды передачи, ссылками или линиями.

Общие данные. Общие данные — это данные, которые файловые серверы предоставляют клиентам, такие как файлы данных, программы доступа к принтерам и электронная почта.

Общие принтеры и другие периферийные устройства. Общие принтеры и периферийные устройства представляют собой аппаратные ресурсы, предоставляемые пользователям сети серверами. Предоставляемые ресурсы включают файлы данных, принтеры, программное обеспечение или любые другие элементы, используемые клиентами в сети.

Сетевая интерфейсная карта. Каждый компьютер в сети имеет специальную карту расширения, называемую сетевой интерфейсной картой (NIC). Сетевая карта подготавливает (форматирует) и отправляет данные, получает данные и контролирует поток данных между компьютером и сетью. На стороне передачи NIC передает кадры данных на физический уровень, который передает данные по физическому каналу. На стороне получателя сетевая карта обрабатывает биты, полученные с физического уровня, и обрабатывает сообщение на основе его содержимого.

Локальная операционная система. Локальная операционная система позволяет персональным компьютерам получать доступ к файлам, печатать на локальном принтере, а также иметь и использовать один или несколько дисков и дисководов компакт-дисков, расположенных на компьютере. Примерами являются MS-DOS, Unix, Linux, Windows 2000, Windows 98, Windows XP и т. д. Сетевая операционная система — это программное обеспечение сети. Он служит той же цели, что и ОС на отдельном компьютере

Сетевая операционная система. Сетевая операционная система – это программа, которая работает на компьютерах и серверах и позволяет компьютерам обмениваться данными по сети.

Концентратор. Концентратор — это устройство, которое разделяет сетевое соединение на несколько компьютеров. Это как распределительный центр. Когда компьютер запрашивает информацию из сети или определенного компьютера, он отправляет запрос на концентратор через кабель. Концентратор получит запрос и передаст его во всю сеть. Затем каждый компьютер в сети должен выяснить, предназначены ли широковещательные данные для них или нет.

Коммутатор. Коммутатор — это телекоммуникационное устройство, сгруппированное как один из компонентов компьютерной сети. Коммутатор похож на концентратор, но имеет расширенные функции. Он использует адреса физических устройств в каждом входящем сообщении, чтобы доставить сообщение в нужное место назначения или порт.

В отличие от концентратора, коммутатор не рассылает полученное сообщение по всей сети, а перед отправкой проверяет, на какую систему или порт следует отправить сообщение. Другими словами, коммутатор напрямую соединяет источник и пункт назначения, что увеличивает скорость сети. И коммутатор, и концентратор имеют общие черты: несколько портов RJ-45, источник питания и индикаторы подключения.

Маршрутизатор. Когда мы говорим о компонентах компьютерной сети, другое устройство, которое используется для подключения локальной сети к Интернету, называется маршрутизатором. Если у вас есть две отдельные сети (LAN) или вы хотите использовать одно подключение к Интернету для нескольких компьютеров, мы используем маршрутизатор. В большинстве случаев современные маршрутизаторы также включают в себя коммутатор, который, другими словами, можно использовать в качестве коммутатора. Вам не нужно покупать и коммутатор, и маршрутизатор, особенно если вы устанавливаете малые предприятия и домашние сети. Существует два типа маршрутизатора: проводной и беспроводной. Выбор зависит от вашего физического офиса или дома, скорости и стоимости.

Кабель локальной сети Кабель локальной сети, также известный как кабель для передачи данных или кабель Ethernet, представляет собой проводной кабель, используемый для подключения устройства к Интернету или другим устройствам, таким как компьютер, принтеры и т. д.

Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:

Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.

MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.

PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.

Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

Коммутаторы. Коммутатор – это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.

Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.

Топология сети

Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:

При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.

В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных.Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует много точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все это упомянуто выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

    — это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые службы в IBM Cloud предоставляют вам сетевые решения для увеличения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.

Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.

Компьютерная сеть или сеть передачи данных — это телекоммуникационная сеть, которая позволяет компьютерам обмениваться данными. В компьютерных сетях сетевые вычислительные устройства обмениваются данными друг с другом, используя канал передачи данных. Соединения между узлами устанавливаются с использованием либо кабельной, либо беспроводной среды. Самой известной компьютерной сетью является Интернет.

Сетевые компьютерные устройства, которые отправляют, направляют и завершают данные, называются сетевыми узлами. [1] Узлы могут включать хосты, такие как персональные компьютеры, телефоны, серверы, а также сетевое оборудование. Можно сказать, что два таких устройства объединены в сеть, когда одно устройство может обмениваться информацией с другим устройством, независимо от того, имеют ли они прямое соединение друг с другом.

Компьютерные сети различаются средой передачи, используемой для передачи их сигналов, протоколами связи для организации сетевого трафика, размером сети, топологией и организационным назначением.

Компьютерные сети поддерживают огромное количество приложений и служб, таких как доступ к всемирной паутине, цифровое видео, цифровое аудио, совместное использование приложений и серверов хранения, принтеров и факсимильных аппаратов, а также использование приложений электронной почты и обмена мгновенными сообщениями. а также многие другие. В большинстве случаев коммуникационные протоколы для конкретных приложений накладываются друг на друга (т. е. передаются как полезная нагрузка) поверх других более общих коммуникационных протоколов.

Свойства

Компьютерные сети можно рассматривать как отрасль электротехники, телекоммуникаций, компьютерных наук, информационных технологий или вычислительной техники, поскольку они опираются на теоретическое и практическое применение связанных дисциплин.

Компьютерная сеть облегчает межличностное общение, позволяя пользователям эффективно и легко общаться с помощью различных средств: электронной почты, обмена мгновенными сообщениями, чатов, телефона, видеотелефонных звонков и видеоконференций. Предоставление доступа к информации на общих устройствах хранения данных является важной функцией многих сетей. Сеть позволяет обмениваться файлами, данными и другими типами информации, предоставляя авторизованным пользователям возможность доступа к информации, хранящейся на других компьютерах в сети. Сеть позволяет совместно использовать сетевые и вычислительные ресурсы. Пользователи могут получать доступ к ресурсам, предоставляемым устройствами в сети, и использовать их, например, для печати документа на общем сетевом принтере. Распределенные вычисления используют вычислительные ресурсы в сети для выполнения задач. Компьютерная сеть может использоваться компьютерными взломщиками для распространения компьютерных вирусов или компьютерных червей на устройствах, подключенных к сети, или для предотвращения доступа этих устройств к сети посредством атаки типа "отказ в обслуживании".

Сетевой пакет

Компьютерные каналы связи, которые не поддерживают пакеты, такие как традиционные двухточечные телекоммуникационные каналы, просто передают данные в виде потока битов. Однако большая часть информации в компьютерных сетях передается в пакетах. Сетевой пакет – это форматированная единица данных (список битов или байтов, обычно от нескольких десятков байт до нескольких килобайт), передаваемая по сети с коммутацией пакетов.

В пакетных сетях данные форматируются в пакеты, которые отправляются по сети к месту назначения. Как только пакеты прибывают, они снова собираются в исходное сообщение. С пакетами полоса пропускания среды передачи может быть лучше распределена между пользователями, чем если бы сеть была коммутируемой. Когда один пользователь не отправляет пакеты, канал может быть заполнен пакетами от других пользователей, и, таким образом, стоимость может быть разделена с относительно небольшим вмешательством, при условии, что канал не перегружен.

Пакеты состоят из двух типов данных: управляющей информации и пользовательских данных (полезной нагрузки). Управляющая информация предоставляет данные, необходимые сети для доставки пользовательских данных, например: исходные и конечные сетевые адреса, коды обнаружения ошибок и информацию о последовательности.Как правило, управляющая информация содержится в заголовках и трейлерах пакетов, а между ними находятся полезные данные.

Часто маршрут, по которому должен пройти пакет через сеть, недоступен сразу. В этом случае пакет ставится в очередь и ожидает освобождения канала.

Сетевые узлы

Помимо любой физической среды передачи, сети содержат дополнительные базовые структурные элементы системы, такие как контроллер сетевого интерфейса (NIC), повторители, концентраторы, мосты, коммутаторы, маршрутизаторы, модемы и брандмауэры.

Типы сетей

Наносеть. Наноразмерная коммуникационная сеть имеет ключевые компоненты, реализованные на наноуровне, включая носители сообщений, и использует физические принципы, которые отличаются от механизмов связи на макроуровне. Наноразмерная связь расширяет связь до очень маленьких датчиков и приводов, таких как те, что находятся в биологических системах, а также имеет тенденцию работать в средах, которые были бы слишком суровыми для классической связи. [16]

Персональная сеть — Персональная сеть (PAN) — это компьютерная сеть, используемая для связи между компьютерами и различными информационными технологическими устройствами, находящимися рядом с одним человеком. Некоторыми примерами устройств, которые используются в PAN, являются персональные компьютеры, принтеры, факсимильные аппараты, телефоны, КПК, сканеры и даже игровые приставки. PAN может включать в себя проводные и беспроводные устройства. Дальность действия PAN обычно достигает 10 метров. [17] Проводная персональная сеть обычно состоит из соединений USB и FireWire, а такие технологии, как Bluetooth и инфракрасная связь, обычно образуют беспроводную персональную сеть.

Локальная сеть. Локальная сеть (LAN) – это сеть, которая соединяет компьютеры и устройства в ограниченной географической зоне, например в доме, школе, офисном здании или группе близко расположенных зданий. Каждый компьютер или устройство в сети является узлом. Проводные локальные сети, скорее всего, основаны на технологии Ethernet. Более новые стандарты, такие как ITU-T G.hn, также позволяют создавать проводные локальные сети с использованием существующей проводки, такой как коаксиальные кабели, телефонные линии и линии электропередач. [18]

Определяющими характеристиками локальной сети, в отличие от глобальной сети (WAN), являются более высокая скорость передачи данных, ограниченный географический диапазон и отсутствие зависимости от выделенных линий для обеспечения подключения. Текущие технологии Ethernet или другие технологии локальных сетей IEEE 802.3 работают со скоростью передачи данных до 100 Гбит/с, стандартизованной IEEE в 2010 году. [19] В настоящее время разрабатывается Ethernet со скоростью 400 Гбит/с.

Локальную сеть можно подключить к глобальной сети с помощью маршрутизатора.

Домашняя сеть. Домашняя сеть (HAN) — это жилая локальная сеть, используемая для связи между цифровыми устройствами, обычно развернутыми дома, обычно небольшим количеством персональных компьютеров и аксессуаров, таких как принтеры и мобильные вычислительные устройства. Важной функцией является совместное использование доступа в Интернет, часто широкополосного доступа через поставщика кабельного телевидения или цифровой абонентской линии (DSL).

Сеть хранения данных. Сеть хранения данных (SAN) – это выделенная сеть, обеспечивающая доступ к консолидированному хранилищу данных на уровне блоков. Сети SAN в основном используются для того, чтобы сделать устройства хранения, такие как дисковые массивы, ленточные библиотеки и оптические музыкальные автоматы, доступными для серверов, чтобы они выглядели как локально подключенные устройства для операционной системы. SAN обычно имеет свою собственную сеть устройств хранения, которые, как правило, недоступны через локальную сеть для других устройств. Стоимость и сложность сетей хранения данных снизились в начале 2000-х годов до уровней, позволяющих более широкое внедрение как в корпоративных средах, так и в средах малого и среднего бизнеса.

Сеть кампуса. Сеть кампуса (CAN) состоит из соединения локальных сетей в пределах ограниченной географической области. Сетевое оборудование (коммутаторы, маршрутизаторы) и средства передачи (оптоволокно, медные заводы, кабели категории 5 и т. д.) почти полностью принадлежат арендатору/владельцу кампуса (предприятию, университету, правительству и т. д.).

Например, сеть университетского городка, скорее всего, будет соединять различные здания кампуса, соединяя академические колледжи или факультеты, библиотеку и студенческие общежития.

Магистральная сеть. Магистральная сеть является частью инфраструктуры компьютерной сети, которая обеспечивает путь для обмена информацией между различными локальными сетями или подсетями. Магистраль может связать воедино различные сети в одном и том же здании, в разных зданиях или на большой территории.

Например, крупная компания может внедрить магистральную сеть, чтобы соединить отделы, расположенные по всему миру. Оборудование, связывающее сети подразделений, составляет основу сети. При проектировании магистрали сети критически важными факторами, которые необходимо учитывать, являются производительность сети и ее перегрузка. Обычно пропускная способность магистральной сети больше, чем у отдельных сетей, подключенных к ней.

Другим примером магистральной сети является магистраль Интернета, представляющая собой набор глобальных сетей (WAN) и основных маршрутизаторов, которые связывают воедино все сети, подключенные к Интернету.

Городская сеть. Городская сеть (MAN) — это крупная компьютерная сеть, обычно охватывающая город или большой кампус

Глобальная вычислительная сеть. Глобальная вычислительная сеть (WAN) – это компьютерная сеть, охватывающая большую географическую территорию, например город, страну, или даже межконтинентальные расстояния. WAN использует канал связи, который сочетает в себе множество типов носителей, таких как телефонные линии, кабели и радиоволны. WAN часто использует средства передачи, предоставляемые обычными операторами связи, такими как телефонные компании. Технологии WAN обычно функционируют на трех нижних уровнях эталонной модели OSI: физическом уровне, уровне канала передачи данных и сетевом уровне.

Частная сеть предприятия. Частная сеть предприятия – это сеть, которую строит одна организация для соединения своих офисов (например, производственных площадок, головных офисов, удаленных офисов, магазинов), чтобы они могли совместно использовать компьютерные ресурсы.

Виртуальная частная сеть. Виртуальная частная сеть (VPN) представляет собой оверлейную сеть, в которой некоторые связи между узлами передаются через открытые соединения или виртуальные каналы в какой-либо более крупной сети (например, в Интернете), а не по физическим проводам. В этом случае говорят, что протоколы канального уровня виртуальной сети туннелируются через более крупную сеть. Одним из распространенных приложений является безопасная связь через общедоступный Интернет, но VPN не обязательно должна иметь явные функции безопасности, такие как аутентификация или шифрование контента. Например, виртуальные частные сети можно использовать для разделения трафика разных сообществ пользователей в базовой сети с надежными функциями безопасности.

VPN может иметь максимальную производительность или иметь определенное соглашение об уровне обслуживания (SLA) между клиентом VPN и поставщиком услуг VPN. Как правило, VPN имеет более сложную топологию, чем точка-точка.

Глобальная вычислительная сеть. Глобальная вычислительная сеть (GAN) – это сеть, используемая для поддержки мобильных устройств в произвольном количестве беспроводных локальных сетей, зон покрытия спутников и т. д. Ключевой проблемой мобильной связи является передача пользовательских сообщений из одного локального покрытия. область к следующей. В проекте IEEE 802 это включает последовательность наземных беспроводных локальных сетей. [20]

Интранет

Интранет – это набор сетей, находящихся под контролем одного административного объекта. Интранет использует протокол IP и инструменты на основе IP, такие как веб-браузеры и приложения для передачи файлов. Административный объект ограничивает использование интрасети авторизованными пользователями. Чаще всего интранет — это внутренняя локальная сеть организации. Большая интрасеть обычно имеет по крайней мере один веб-сервер для предоставления пользователям организационной информации. Интранет — это также все, что находится за маршрутизатором в локальной сети.

Экстранет

Экстранет — это сеть, которая также находится под административным контролем одной организации, но поддерживает ограниченное подключение к определенной внешней сети. Например, организация может предоставить доступ к некоторым аспектам своей интрасети для обмена данными со своими деловыми партнерами или клиентами. Этим другим объектам не обязательно доверять с точки зрения безопасности. Сетевое подключение к экстрасети часто, но не всегда, реализуется через технологию WAN.

Даркнет

Даркнет – это оверлейная сеть, обычно работающая в Интернете и доступная только через специализированное программное обеспечение. Даркнет — это анонимная сеть, в которой соединения устанавливаются только между доверенными узлами, иногда называемыми «друзьями» (F2F) [21], с использованием нестандартных протоколов и портов.

Даркнеты отличаются от других распределенных одноранговых сетей тем, что совместное использование является анонимным (то есть IP-адреса не публикуются публично), поэтому пользователи могут общаться, не опасаясь вмешательства правительства или корпорации. [22]

Лицензия

Информация, люди и технологии, созданные Википедией при содействии Барта Пурсела, находятся под лицензией Creative Commons Attribution-ShareAlike 4.0 International License, если не указано иное.

Чтобы построить надежную сеть и защитить ее, вам необходимо понимать устройства, входящие в ее состав.

Что такое сетевые устройства?

Сетевые устройства или сетевое оборудование — это физические устройства, необходимые для связи и взаимодействия между оборудованием в компьютерной сети.

Типы сетевых устройств

Вот общий список сетевых устройств:

  • Центр
  • Переключиться
  • Маршрутизатор
  • Мост
  • Шлюз
  • Модем
  • Повторитель
  • Точка доступа

Концентраторы соединяют несколько компьютерных сетевых устройств вместе.Концентратор также действует как повторитель, поскольку он усиливает сигналы, которые ухудшаются после прохождения больших расстояний по соединительным кабелям. Концентратор является самым простым в семействе сетевых устройств, поскольку он соединяет компоненты локальной сети с одинаковыми протоколами.

Концентратор можно использовать как с цифровыми, так и с аналоговыми данными, при условии, что его настройки настроены для подготовки к форматированию входящих данных. Например, если входящие данные имеют цифровой формат, концентратор должен передавать их в виде пакетов; однако, если входящие данные являются аналоговыми, то концентратор передает их в форме сигнала.

Концентраторы не выполняют функции фильтрации или адресации пакетов; они просто отправляют пакеты данных на все подключенные устройства. Концентраторы работают на физическом уровне модели взаимодействия открытых систем (OSI). Существует два типа концентраторов: простые и многопортовые.

Переключить

Коммутаторы обычно играют более интеллектуальную роль, чем концентраторы. Коммутатор — это многопортовое устройство, повышающее эффективность сети. Коммутатор поддерживает ограниченную маршрутную информацию об узлах внутренней сети и позволяет подключаться к таким системам, как концентраторы или маршрутизаторы. Нити локальных сетей обычно подключаются с помощью коммутаторов. Как правило, коммутаторы могут считывать аппаратные адреса входящих пакетов, чтобы передавать их соответствующему адресату.

Использование коммутаторов повышает эффективность сети по сравнению с концентраторами или маршрутизаторами благодаря возможности виртуальных каналов. Коммутаторы также улучшают сетевую безопасность, поскольку виртуальные каналы труднее исследовать с помощью сетевых мониторов. Вы можете думать о коммутаторе как об устройстве, которое сочетает в себе лучшие возможности маршрутизаторов и концентраторов. Коммутатор может работать либо на канальном уровне, либо на сетевом уровне модели OSI. Многоуровневый коммутатор может работать на обоих уровнях, что означает, что он может работать и как коммутатор, и как маршрутизатор. Многоуровневый коммутатор — это высокопроизводительное устройство, поддерживающее те же протоколы маршрутизации, что и маршрутизаторы.

Коммутаторы могут подвергаться распределенным атакам типа "отказ в обслуживании" (DDoS); защита от наводнений используется для предотвращения остановки коммутатора вредоносным трафиком. Безопасность портов коммутатора важна, поэтому обязательно защитите коммутаторы: отключите все неиспользуемые порты и используйте отслеживание DHCP, проверку ARP и фильтрацию MAC-адресов.

Маршрутизатор

Маршрутизаторы помогают передавать пакеты к месту назначения, прокладывая путь через море взаимосвязанных сетевых устройств, использующих различные сетевые топологии. Маршрутизаторы — это интеллектуальные устройства, и они хранят информацию о сетях, к которым они подключены. Большинство маршрутизаторов можно настроить для работы в качестве брандмауэров с фильтрацией пакетов и использования списков контроля доступа (ACL). Маршрутизаторы в сочетании с блоком обслуживания канала/блоком обслуживания данных (CSU/DSU) также используются для перевода из кадрирования LAN в кадрирование WAN. Это необходимо, поскольку локальные и глобальные сети используют разные сетевые протоколы. Такие маршрутизаторы называются граничными маршрутизаторами. Они служат внешним соединением локальной сети с глобальной сетью и работают на границе вашей сети.

Маршрутизатор также используется для разделения внутренних сетей на две или более подсети. Маршрутизаторы также можно внутренне подключать к другим маршрутизаторам, создавая зоны, работающие независимо. Маршрутизаторы устанавливают связь, поддерживая таблицы о пунктах назначения и локальных соединениях. Маршрутизатор содержит информацию о подключенных к нему системах и о том, куда отправлять запросы, если пункт назначения неизвестен. Маршрутизаторы обычно передают маршрутную и другую информацию, используя один из трех стандартных протоколов: протокол маршрутной информации (RIP), протокол пограничного шлюза (BGP) или протокол открытия кратчайшего пути (OSPF).

Маршрутизаторы — это ваша первая линия защиты, и они должны быть настроены так, чтобы пропускать только тот трафик, который разрешен сетевыми администраторами. Сами маршруты могут быть настроены как статические или динамические. Если они статичны, их можно настроить только вручную, и они останутся такими до тех пор, пока не будут изменены. Если они динамические, они узнают о других маршрутизаторах вокруг них и используют информацию об этих маршрутизаторах для построения своих таблиц маршрутизации.

Маршрутизаторы – это устройства общего назначения, которые соединяют две или более разнородных сетей. Обычно они предназначены для компьютеров специального назначения с отдельными входными и выходными сетевыми интерфейсами для каждой подключенной сети. Поскольку маршрутизаторы и шлюзы являются основой больших компьютерных сетей, таких как Интернет, у них есть специальные функции, которые обеспечивают им гибкость и способность справляться с различными схемами сетевой адресации и размерами кадров посредством сегментации больших пакетов на более мелкие пакеты, соответствующие новой сети. компоненты. Каждый интерфейс маршрутизатора имеет собственный модуль протокола разрешения адресов (ARP), собственный адрес локальной сети (адрес сетевой карты) и собственный адрес интернет-протокола (IP). Маршрутизатор с помощью таблицы маршрутизации знает маршруты, по которым пакет может пройти от источника к месту назначения. Таблица маршрутизации, как и в мосте и коммутаторе, динамично растет.При получении пакета маршрутизатор удаляет заголовки и трейлеры пакета и анализирует заголовок IP, определяя адреса источника и получателя и тип данных, а также отмечая время прибытия. Он также обновляет таблицу маршрутизаторов новыми адресами, которых еще нет в таблице. Информация о заголовке IP и времени прибытия вводится в таблицу маршрутизации. Маршрутизаторы обычно работают на сетевом уровне модели OSI.

Мост

Мосты используются для соединения двух или более хостов или сегментов сети вместе. Основная роль мостов в сетевой архитектуре заключается в хранении и пересылке кадров между различными сегментами, которые соединяет мост. Они используют адреса аппаратного управления доступом к среде (MAC) для передачи кадров. Просматривая MAC-адреса устройств, подключенных к каждому сегменту, мосты могут пересылать данные или блокировать их передачу. Мосты также можно использовать для соединения двух физических локальных сетей в более крупную логическую локальную сеть.

Мосты работают только на физическом уровне и уровне канала данных модели OSI. Мосты используются для разделения больших сетей на более мелкие участки, располагаясь между двумя физическими сегментами сети и управляя потоком данных между ними.

Мосты во многом похожи на концентраторы, включая тот факт, что они соединяют компоненты локальной сети с одинаковыми протоколами. Однако мосты фильтруют входящие пакеты данных, известные как кадры, по адресам перед их пересылкой. Поскольку он фильтрует пакеты данных, мост не вносит изменений в формат или содержимое входящих данных. Мост фильтрует и пересылает кадры по сети с помощью таблицы динамического моста. Таблица мостов, которая изначально пуста, содержит адреса LAN для каждого компьютера в LAN и адреса каждого интерфейса моста, который соединяет LAN с другими LAN. Мосты, как и концентраторы, могут быть простыми или многопортовыми.

В последние годы мосты в основном потеряли популярность и были заменены коммутаторами, которые предлагают больше функций. На самом деле коммутаторы иногда называют «многопортовыми мостами» из-за того, как они работают.

Шлюз

Шлюзы обычно работают на транспортном и сеансовом уровнях модели OSI. На транспортном уровне и выше существует множество протоколов и стандартов от разных поставщиков; шлюзы используются для борьбы с ними. Шлюзы обеспечивают преобразование между сетевыми технологиями, такими как Open System Interconnection (OSI) и протокол управления передачей/Интернет-протокол (TCP/IP). По этой причине шлюзы соединяют две или более автономные сети, каждая со своими алгоритмами маршрутизации, протоколами, топологией, службой доменных имен, а также процедурами и политиками сетевого администрирования.

Шлюзы выполняют все функции маршрутизаторов и даже больше. По сути, маршрутизатор с добавленным функционалом трансляции является шлюзом. Функция, выполняющая преобразование между различными сетевыми технологиями, называется преобразователем протоколов.

Модем

Модемы (модуляторы-демодуляторы) используются для передачи цифровых сигналов по аналоговым телефонным линиям. Таким образом, цифровые сигналы преобразуются модемом в аналоговые сигналы различных частот и передаются на модем в месте приема. Принимающий модем выполняет обратное преобразование и предоставляет цифровой выход устройству, подключенному к модему, обычно компьютеру. Цифровые данные обычно передаются на модем или с него по последовательной линии через стандартный промышленный интерфейс RS-232. Многие телефонные компании предлагают услуги DSL, а многие кабельные операторы используют модемы в качестве оконечных терминалов для идентификации и распознавания домашних и личных пользователей. Модемы работают как на физическом уровне, так и на канальном уровне.

Повторитель

Ретранслятор – это электронное устройство, усиливающее принимаемый сигнал. Вы можете думать о повторителе как об устройстве, которое принимает сигнал и ретранслирует его на более высоком уровне или с большей мощностью, так что сигнал может покрывать большие расстояния, более 100 метров для стандартных кабелей LAN. Повторители работают на физическом уровне.

Точка доступа

Хотя точка доступа (AP) технически может включать проводное или беспроводное соединение, обычно это беспроводное устройство. Точка доступа работает на втором уровне OSI, уровне канала передачи данных, и может работать либо как мост, соединяющий стандартную проводную сеть с беспроводными устройствами, либо как маршрутизатор, передающий данные от одной точки доступа к другой.

Точки беспроводного доступа (WAP) состоят из передатчика и приемника (приемопередатчика), используемых для создания беспроводной локальной сети (WLAN). Точки доступа обычно представляют собой отдельные сетевые устройства со встроенной антенной, передатчиком и адаптером. Точки доступа используют сетевой режим беспроводной инфраструктуры для обеспечения точки соединения между WLAN и проводной локальной сетью Ethernet. У них также есть несколько портов, что дает вам возможность расширить сеть для поддержки дополнительных клиентов. В зависимости от размера сети для обеспечения полного покрытия может потребоваться одна или несколько точек доступа.Дополнительные точки доступа используются для обеспечения доступа к большему количеству беспроводных клиентов и расширения диапазона беспроводной сети. Каждая точка доступа ограничена своим диапазоном передачи — расстоянием, на котором клиент может находиться от точки доступа, при этом получая пригодную для использования скорость обработки сигнала и данных. Фактическое расстояние зависит от стандарта беспроводной связи, препятствий и условий окружающей среды между клиентом и точкой доступа. Точки доступа более высокого класса оснащены мощными антеннами, что позволяет им увеличить дальность распространения беспроводного сигнала.

Точки доступа также могут предоставлять множество портов, которые можно использовать для увеличения размера сети, возможностей брандмауэра и службы протокола динамической конфигурации хоста (DHCP). Таким образом, мы получаем точки доступа, которые являются коммутатором, DHCP-сервером, маршрутизатором и брандмауэром.

Для подключения к беспроводной точке доступа вам потребуется имя идентификатора набора услуг (SSID). Беспроводные сети 802.11 используют SSID для идентификации всех систем, принадлежащих к одной сети, и клиентские станции должны быть настроены с использованием SSID для аутентификации в точке доступа. Точка доступа может транслировать SSID, позволяя всем беспроводным клиентам в зоне видеть SSID точки доступа. Однако из соображений безопасности точки доступа можно настроить так, чтобы они не транслировали SSID, а это означает, что администратору необходимо предоставить клиентским системам SSID, а не разрешить его автоматическое обнаружение. Беспроводные устройства поставляются с SSID по умолчанию, настройками безопасности, каналами, паролями и именами пользователей. Из соображений безопасности настоятельно рекомендуется изменить эти настройки по умолчанию как можно скорее, поскольку на многих интернет-сайтах указаны настройки по умолчанию, используемые производителями.

Точки доступа могут быть толстыми или тонкими. Толстые точки доступа, иногда еще называемые автономными точками доступа, необходимо вручную настраивать сетевыми параметрами и параметрами безопасности; затем их, по сути, оставляют в покое для обслуживания клиентов до тех пор, пока они не перестанут функционировать. Тонкие точки доступа допускают удаленную настройку с помощью контроллера. Поскольку тонкие клиенты не нужно настраивать вручную, их можно легко перенастроить и контролировать. Точки доступа также могут быть на основе контроллера или автономными.

Заключение

Понимание типов доступных сетевых устройств может помочь вам спроектировать и построить безопасную сеть, которая будет хорошо служить вашей организации. Однако, чтобы обеспечить постоянную безопасность и доступность вашей сети, вам следует внимательно следить за своими сетевыми устройствами и активностью вокруг них, чтобы вы могли быстро обнаруживать проблемы с оборудованием, проблемы с конфигурацией и атаки.

Джефф — бывший директор по разработке глобальных решений в Netwrix. Он давний блогер Netwrix, спикер и ведущий. В блоге Netwrix Джефф делится лайфхаками, советами и рекомендациями, которые могут значительно улучшить ваш опыт системного администрирования.

Читайте также: