Назовите основные архитектуры компьютерных систем и кратко определите, в чем суть каждой из них
Обновлено: 21.11.2024
Раздел 404 Закона Сарбейнса-Оксли (SOX) требует, чтобы все публичные компании установили внутренний контроль и процедуры.
Закон о защите конфиденциальности детей в Интернете от 1998 года (COPPA) – это федеральный закон, который налагает особые требования на операторов доменов .
План North American Electric Reliability Corporation по защите критически важной инфраструктуры (NERC CIP) представляет собой набор стандартов.
Стандарт безопасности данных платежных приложений (PA-DSS) – это набор требований, призванных помочь поставщикам программного обеспечения в разработке безопасных .
Взаимная аутентификация, также называемая двусторонней аутентификацией, представляет собой процесс или технологию, в которой оба объекта обмениваются данными .
Экранированная подсеть или брандмауэр с тройным подключением относится к сетевой архитектуре, в которой один брандмауэр используется с тремя сетями .
Медицинская транскрипция (МТ) – это ручная обработка голосовых сообщений, продиктованных врачами и другими медицинскими работниками.
Электронное отделение интенсивной терапии (eICU) — это форма или модель телемедицины, в которой используются самые современные технологии.
Защищенная медицинская информация (PHI), также называемая личной медицинской информацией, представляет собой демографическую информацию, медицинскую .
Снижение рисков – это стратегия подготовки к угрозам, с которыми сталкивается бизнес, и уменьшения их последствий.
Отказоустойчивая технология — это способность компьютерной системы, электронной системы или сети обеспечивать бесперебойное обслуживание.
Синхронная репликация — это процесс копирования данных по сети хранения, локальной или глобальной сети, поэтому .
Коэффициент усиления записи (WAF) – это числовое значение, представляющее объем данных, передаваемых контроллером твердотельного накопителя (SSD) .
API облачного хранилища — это интерфейс прикладного программирования, который соединяет локальное приложение с облачным хранилищем.
Интерфейс управления облачными данными (CDMI) – это международный стандарт, определяющий функциональный интерфейс, используемый приложениями.
Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.
Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.
цифровой компьютер, любое из класса устройств, способных решать задачи путем обработки информации в дискретной форме. Он работает с данными, включая величины, буквы и символы, которые выражены в двоичном коде, т. е. с использованием только двух цифр 0 и 1. Считая, сравнивая и манипулируя этими цифрами или их комбинациями в соответствии с набором инструкций, хранимых в своей памяти цифровая вычислительная машина может выполнять такие задачи, как управление производственными процессами и регулирование работы машин; анализировать и систематизировать огромные объемы бизнес-данных; и моделировать поведение динамических систем (например, глобальные погодные условия и химические реакции) в научных исследованиях.
Далее следует краткое описание цифровых компьютеров. Полное описание см. в см. информатике: основные компьютерные компоненты.
Вы используете его прямо сейчас. Но вы должны пройти этот тест, чтобы узнать, что вы на самом деле знаете об Интернете.
Функциональные элементы
Типичная цифровая компьютерная система имеет четыре основных функциональных элемента: (1) оборудование ввода-вывода, (2) основную память, (3) блок управления и (4) арифметико-логическое устройство. Любое из ряда устройств используется для ввода данных и программных инструкций в компьютер и для получения доступа к результатам операции обработки. Общие устройства ввода включают клавиатуры и оптические сканеры; устройства вывода включают принтеры и мониторы. Информация, полученная компьютером от своего блока ввода, сохраняется в основной памяти или, если не для непосредственного использования, во вспомогательном запоминающем устройстве. Блок управления выбирает и вызывает инструкции из памяти в соответствующей последовательности и передает соответствующие команды соответствующему блоку. Он также синхронизирует различные рабочие скорости устройств ввода и вывода со скоростью арифметико-логического устройства (ALU), чтобы обеспечить правильное перемещение данных по всей компьютерной системе. ALU выполняет арифметические и логические алгоритмы, выбранные для обработки входящих данных, с чрезвычайно высокой скоростью — во многих случаях за наносекунды (миллиардные доли секунды). Основная память, блок управления и АЛУ вместе составляют центральный процессор (ЦП) большинства цифровых компьютерных систем, а устройства ввода-вывода и вспомогательные запоминающие устройства составляют периферийное оборудование.
Разработка цифрового компьютера
Блез Паскаль из Франции и Готфрид Вильгельм Лейбниц из Германии изобрели механические цифровые вычислительные машины в 17 веке. Однако обычно считается, что английский изобретатель Чарльз Бэббидж создал первый автоматический цифровой компьютер. В 1830-х годах Бэббидж разработал свою так называемую аналитическую машину, механическое устройство, предназначенное для объединения основных арифметических операций с решениями, основанными на собственных вычислениях. Планы Бэббиджа воплотили в себе большинство фундаментальных элементов современного цифрового компьютера. Например, они призывали к последовательному управлению, т. е. программному управлению, которое включало ветвление, циклирование, а также арифметические и запоминающие устройства с автоматической распечаткой. Однако устройство Бэббиджа так и не было завершено и было забыто до тех пор, пока его труды не были заново открыты более века спустя.
Огромное значение в эволюции цифрового компьютера имели работы английского математика и логика Джорджа Буля. В различных эссе, написанных в середине 1800-х годов, Буль обсуждал аналогию между символами алгебры и символами логики, используемыми для представления логических форм и силлогизмов. Его формализм, работающий только с 0 и 1, стал основой того, что сейчас называется булевой алгеброй, на которой основаны теория и процедуры компьютерного переключения.
Джону В. Атанасову, американскому математику и физику, приписывают создание первого электронного цифрового компьютера, который он построил с 1939 по 1942 год с помощью своего аспиранта Клиффорда Э. Берри. Конрад Цузе, немецкий инженер, фактически изолированный от других разработок, в 1941 году завершил строительство первой действующей вычислительной машины с программным управлением (Z3). В 1944 году Ховард Эйкен и группа инженеров корпорации International Business Machines (IBM) завершили работу над Harvard Mark I – машиной, операции обработки данных которой контролировались главным образом электрическими реле (коммутационными устройствами).
Клиффорд Э. Берри и компьютер Атанасова-Берри, или ABC, c. 1942 г. ABC, возможно, был первым электронным цифровым компьютером.
С момента разработки Harvard Mark I цифровой компьютер развивался быстрыми темпами. Последовательность достижений в компьютерном оборудовании, главным образом в области логических схем, часто делится на поколения, при этом каждое поколение включает группу машин, использующих общую технологию.
В 1946 году Дж. Преспер Эккерт и Джон У. Мочли из Пенсильванского университета сконструировали ENIAC (аббревиатура от eэлектронный nмерический i интегратор ии cкомпьютер), цифровая машина и первый электронный компьютер общего назначения. Его вычислительные возможности были заимствованы у машины Атанасова; оба компьютера включали электронные лампы вместо реле в качестве активных логических элементов, что привело к значительному увеличению скорости работы. Концепция компьютера с хранимой программой была представлена в середине 1940-х годов, а идея хранения кодов инструкций, а также данных в электрически изменяемой памяти была реализована в EDVAC (electronic, d создать vпеременный аавтоматический cкомпьютер).
Второе поколение компьютеров появилось в конце 1950-х годов, когда в продажу поступили цифровые машины, использующие транзисторы. Хотя этот тип полупроводникового устройства был изобретен в 1948 году, потребовалось более 10 лет опытно-конструкторских работ, чтобы сделать его жизнеспособной альтернативой электронной лампе. Небольшой размер транзистора, его большая надежность и относительно низкое энергопотребление значительно превосходили лампу. Его использование в компьютерных схемах позволило производить цифровые системы, которые были значительно эффективнее, меньше и быстрее, чем их предки первого поколения.
Транзистор был изобретен в 1947 году в Bell Laboratories Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли.
В конце 1960-х и 1970-х годах компьютерное оборудование стало еще более значительным. Первым было изготовление интегральной схемы, твердотельного устройства, содержащего сотни транзисторов, диодов и резисторов на крошечном кремниевом чипе.Эта микросхема сделала возможным производство мейнфреймов (крупномасштабных) компьютеров с более высокими рабочими скоростями, мощностью и надежностью при значительно меньших затратах. Другим типом компьютеров третьего поколения, которые были разработаны в результате микроэлектроники, были миникомпьютеры, машина значительно меньшего размера, чем стандартный мэйнфрейм, но достаточно мощная, чтобы управлять приборами целой научной лаборатории.
Развитие крупномасштабной интеграции (БИС) позволило производителям оборудования разместить тысячи транзисторов и других связанных компонентов на одном кремниевом чипе размером с ноготь ребенка. Такая микросхема дала два устройства, которые произвели революцию в компьютерной технике. Первым из них был микропроцессор, представляющий собой интегральную схему, содержащую все арифметические, логические и управляющие схемы центрального процессора. Его производство привело к разработке микрокомпьютеров, систем размером не больше портативных телевизоров, но со значительной вычислительной мощностью. Другим важным устройством, появившимся из схем БИС, была полупроводниковая память. Это компактное запоминающее устройство, состоящее всего из нескольких микросхем, хорошо подходит для использования в миникомпьютерах и микрокомпьютерах. Кроме того, он находит применение во все большем числе мейнфреймов, особенно в тех, которые предназначены для высокоскоростных приложений, из-за его высокой скорости доступа и большой емкости памяти. Такая компактная электроника привела в конце 1970-х годов к разработке персонального компьютера, цифрового компьютера, достаточно небольшого и недорогого, чтобы его могли использовать обычные потребители.
К началу 1980-х интегральные схемы продвинулись до очень крупномасштабной интеграции (СБИС). Этот дизайн и технология производства значительно увеличили плотность схем микропроцессора, памяти и вспомогательных микросхем, т. Е. Те, которые служат для сопряжения микропроцессоров с устройствами ввода-вывода. К 1990-м годам некоторые схемы СБИС содержали более 3 миллионов транзисторов на кремниевой микросхеме площадью менее 0,3 квадратных дюйма (2 квадратных см).
Цифровые компьютеры 1980-х и 90-х годов, использующие технологии БИС и СБИС, часто называют системами четвертого поколения. Многие микрокомпьютеры, произведенные в 1980-х годах, были оснащены одним чипом, на котором были интегрированы схемы процессора, памяти и функций интерфейса. (См. также суперкомпьютер.)
Использование персональных компьютеров выросло в 1980-х и 90-х годах. Распространение Всемирной паутины в 1990-х годах привело миллионы пользователей к Интернету, всемирной компьютерной сети, и к 2019 году около 4,5 миллиардов человек, более половины населения мира, имели доступ к Интернету. Компьютеры становились меньше и быстрее, и в начале 21 века они были широко распространены в смартфонах, а затем и в планшетных компьютерах.
Редакторы Британской энциклопедии Эта статья была недавно отредактирована и обновлена Эриком Грегерсеном.
Архитектура компьютера связана с проектированием компьютеров, устройств хранения данных и сетевых компонентов, которые хранят и запускают программы, передают данные и управляют взаимодействием между компьютерами, сетями и пользователями. Компьютерные архитекторы используют параллелизм и различные стратегии организации памяти для проектирования вычислительных систем с очень высокой производительностью. Компьютерная архитектура требует тесного взаимодействия между компьютерными учеными и компьютерными инженерами, поскольку они оба в основном сосредоточены на разработке аппаратного обеспечения.
На самом базовом уровне компьютер состоит из блока управления, арифметико-логического блока (ALU), блока памяти и контроллеров ввода-вывода (I/O). АЛУ выполняет простые операции сложения, вычитания, умножения, деления и логические операции, такие как ИЛИ и И. В памяти хранятся инструкции и данные программы. Блок управления извлекает данные и инструкции из памяти и использует операции АЛУ для выполнения этих инструкций с использованием этих данных. (Блок управления и АЛУ вместе называются центральным процессором [ЦП].) Когда встречается инструкция ввода или вывода, блок управления передает данные между памятью и назначенным контроллером ввода-вывода. Скорость работы ЦП в первую очередь определяет скорость работы компьютера в целом. Все эти компоненты — блок управления, АЛУ, память и контроллеры ввода-вывода — реализованы на транзисторных схемах.
Компьютеры размещают веб-сайты, состоящие из HTML, и отправляют текстовые сообщения так же просто, как. РЖУ НЕ МОГУ. Взломайте этот тест, и пусть какая-нибудь технология подсчитает ваш результат и раскроет вам его содержание.
Компьютеры также имеют другой уровень памяти, называемый кешем, небольшой, чрезвычайно быстрый (по сравнению с основной памятью или оперативной памятью [ОЗУ]) блок, который можно использовать для хранения информации, которая срочно или часто требуется. Текущие исследования включают дизайн кэша и алгоритмы, которые могут предсказывать, какие данные потребуются в следующий раз, и предварительно загружать их в кэш для повышения производительности.
Контроллеры ввода-вывода подключают компьютер к определенным устройствам ввода (таким как клавиатуры и сенсорные дисплеи) для передачи информации в память и к устройствам вывода (таким как принтеры и дисплеи) для передачи информации из памяти пользователям. Дополнительные контроллеры ввода-вывода подключают компьютер к сети через порты, обеспечивающие канал, по которому передаются данные, когда компьютер подключен к Интернету.
К контроллерам ввода-вывода подключены вторичные устройства хранения, такие как дисковод, которые работают медленнее и имеют большую емкость, чем основная или кэш-память. Дисковые накопители используются для хранения постоянных данных. Они могут быть постоянно или временно подключены к компьютеру в виде компакт-диска (CD), цифрового видеодиска (DVD) или карты памяти (также называемой флэш-накопителем).
Работа компьютера после загрузки программы и некоторых данных в оперативную память происходит следующим образом. Первая инструкция передается из ОЗУ в блок управления и интерпретируется аппаратной схемой. Например, предположим, что инструкция представляет собой строку битов, которая является кодом для ЗАГРУЗКИ 10. Эта инструкция загружает содержимое ячейки памяти 10 в АЛУ. Выбирается следующая инструкция, скажем, ADD 15. Затем блок управления загружает содержимое ячейки памяти 15 в АЛУ и добавляет его к уже имеющемуся номеру. Наконец, инструкция STORE 20 сохранит эту сумму в ячейке 20. На этом уровне работа компьютера мало чем отличается от работы карманного калькулятора.
В целом, программы — это не просто длинные последовательности операций ЗАГРУЗКИ, СОХРАНЕНИЯ и арифметических операций. Самое главное, компьютерные языки включают условные инструкции — по сути, правила, которые гласят: «Если ячейка памяти n удовлетворяет условию a, выполните следующую команду с номером x». , иначе выполните инструкцию y». Это позволяет определять ход программы по результатам предыдущих операций — критически важная возможность.
Наконец, программы обычно содержат последовательности инструкций, которые повторяются несколько раз до тех пор, пока заданное условие не станет истинным. Такая последовательность называется циклом. Например, потребуется цикл для вычисления суммы первых n целых чисел, где n — это значение, хранящееся в отдельной ячейке памяти. Компьютерные архитектуры, которые могут выполнять последовательности инструкций, условные инструкции и циклы, называются «полными по Тьюрингу», что означает, что они могут выполнять любой алгоритм, который может быть определен. Полнота по Тьюрингу — фундаментальная и важная характеристика любой компьютерной организации.
Логический дизайн — это область компьютерных наук, которая занимается проектированием электронных схем с использованием фундаментальных принципов и свойств логики (см. булева алгебра) для выполнения операций блока управления, ALU, контроллеры ввода-вывода и другое оборудование. Каждая логическая функция (И, ИЛИ и НЕ) реализуется устройством определенного типа, называемым логическим элементом. Например, схема сложения АЛУ имеет входы, соответствующие всем битам двух суммируемых чисел, и выходы, соответствующие битам суммы. Расположение проводов и вентилей, соединяющих входы и выходы, определяется математическим определением сложения. В конструкции блока управления предусмотрены схемы, интерпретирующие инструкции. Из-за потребности в эффективности логическая конструкция также должна оптимизировать схему для работы с максимальной скоростью и иметь минимальное количество логических элементов и цепей.
Важной областью, связанной с архитектурой, является разработка микропроцессоров, которые представляют собой полноценные ЦП — блок управления, АЛУ и память — на одном кристалле интегральной схемы. Дополнительная память и схема управления вводом-выводом связаны с этим чипом, чтобы сформировать законченный компьютер.Эти миниатюрные устройства содержат миллионы транзисторов, реализующих блоки обработки и памяти современных компьютеров.
Проектирование микропроцессора СБИС происходит в несколько этапов, включая создание начальной функциональной или поведенческой спецификации, кодирование этой спецификации на языке описания оборудования, разбивку конструкции на модули и создание размеров и форм для конечных компонентов микросхемы. Это также включает в себя планирование чипа, которое включает в себя создание «плана этажа», чтобы указать, где на чипе каждый компонент должен быть размещен и соединен с другими компонентами. Ученые-компьютерщики также участвуют в создании инструментов автоматизированного проектирования (САПР), которые помогают инженерам на различных этапах проектирования микросхем, а также в разработке необходимых теоретических результатов, таких как эффективное проектирование плана этажа с почти минимальной площадью, удовлетворяющей требованиям. заданные ограничения.
Прогресс в технологии интегральных схем был невероятным. Например, в 1971 году первый микропроцессорный чип (4004 корпорации Intel) имел всего 2300 транзисторов, в 1993 году чип Intel Pentium имел более 3 миллионов транзисторов, а к 2000 году количество транзисторов на таком чипе составило около 50 миллионов. Чип Power7, представленный IBM в 2010 году, содержал примерно 1 миллиард транзисторов. Явление, когда количество транзисторов в интегральной схеме удваивается примерно каждые два года, широко известно как закон Мура.
Закон Мура. Гордон Э. Мур заметил, что количество транзисторов на компьютерном чипе удваивается примерно каждые 18–24 месяца. Как показано на логарифмическом графике количества транзисторов в процессорах Intel на момент их появления, его «закон» соблюдался.
Отказоустойчивость — это способность компьютера продолжать работу при отказе одного или нескольких его компонентов. Для обеспечения отказоустойчивости ключевые компоненты часто реплицируются, чтобы при необходимости их мог взять на себя резервный компонент. Такие приложения, как управление воздушным судном и управление производственным процессом, работают на системах с резервными процессорами, готовыми взять на себя управление в случае отказа основного процессора, а резервные системы часто работают параллельно, поэтому переход происходит плавно. Если системы критичны в том смысле, что их сбой может привести к катастрофическим последствиям (как в случае управления воздушным судном), несовместимые результаты, полученные от реплицированных процессов, запущенных параллельно на отдельных машинах, разрешаются с помощью механизма голосования. Ученые-компьютерщики занимаются анализом таких реплицированных систем, предоставляя теоретические подходы к оценке надежности, достигаемой при данной конфигурации и параметрах процессора, таких как среднее время наработки на отказ и среднее время, необходимое для ремонта процессора. Отказоустойчивость также является желательной функцией в распределенных системах и сетях. Например, преимуществом распределенной базы данных является то, что данные, реплицированные на разных узлах сети, могут обеспечить естественный механизм резервного копирования в случае сбоя одного узла.
Вычислительные науки
Вычислительная наука применяет компьютерное моделирование, научную визуализацию, математическое моделирование, алгоритмы, структуры данных, сети, проектирование баз данных, символьные вычисления и высокопроизводительные вычисления для достижения целей различных дисциплин. Эти дисциплины включают биологию, химию, гидродинамику, археологию, финансы, социологию и судебную экспертизу. Вычислительная наука быстро развивалась, особенно из-за резкого роста объема данных, передаваемых с научных инструментов. Это явление получило название проблемы «больших данных».
Математические методы, необходимые для вычислительной науки, требуют преобразования уравнений и функций из непрерывных в дискретные. Например, компьютерное интегрирование функции на интервале выполняется не путем применения интегрального исчисления, а путем аппроксимации площади под графиком функции как суммы площадей, полученных при вычислении функции в дискретных точках. Точно так же решение дифференциального уравнения получается как последовательность дискретных точек, определяемых путем аппроксимации кривой истинного решения последовательностью касательных отрезков. При такой дискретизации многие проблемы можно преобразовать в уравнение, включающее матрицу (прямоугольный массив чисел), решаемую с помощью линейной алгебры. Численный анализ - это изучение таких вычислительных методов. При применении численных методов необходимо учитывать несколько факторов: (1) условия, при которых метод дает решение, (2) точность решения, (3) является ли процесс решения устойчивым (т. е. не показывает рост ошибки) , и (4) вычислительная сложность (в смысле, описанном выше) получения решения желаемой точности.
Требования к научным задачам, связанным с большими данными, включая решение все более крупных систем уравнений, включают использование больших и мощных массивов процессоров (называемых мультипроцессорами или суперкомпьютерами), которые позволяют выполнять множество вычислений параллельно, назначая их отдельные элементы обработки. Эти действия вызвали большой интерес к параллельной компьютерной архитектуре и алгоритмам, которые можно эффективно выполнять на таких машинах.
Графика и визуальные вычисления
Графика и визуальные вычисления — это область, связанная с отображением и управлением изображениями на экране компьютера. Эта область охватывает эффективную реализацию четырех взаимосвязанных вычислительных задач: рендеринг, моделирование, анимация и визуализация. Графические методы включают в себя принципы линейной алгебры, численного интегрирования, вычислительной геометрии, специального оборудования, форматов файлов и графических пользовательских интерфейсов (GUI) для выполнения этих сложных задач.
Применения графики включают САПР, изобразительное искусство, медицинскую визуализацию, визуализацию научных данных и видеоигры. CAD-системы позволяют использовать компьютер для проектирования объектов, начиная от деталей автомобилей и заканчивая мостами и компьютерными чипами, предоставляя интерактивный инструмент рисования и инженерный интерфейс для инструментов моделирования и анализа. Приложения для изобразительного искусства позволяют художникам использовать экран компьютера в качестве среды для создания изображений, кинематографических спецэффектов, анимационных мультфильмов и телевизионных рекламных роликов. Приложения медицинской визуализации включают визуализацию данных, полученных с помощью таких технологий, как рентген и магнитно-резонансная томография (МРТ), чтобы помочь врачам в диагностике заболеваний. Научная визуализация использует огромные объемы данных для моделирования научных явлений, таких как моделирование океана, для создания изображений, которые обеспечивают более глубокое понимание явлений, чем таблицы чисел. Графика также обеспечивает реалистичную визуализацию для видеоигр, моделирования полета и других представлений реальности или фантазии. Термин виртуальная реальность был придуман для обозначения любого взаимодействия с компьютерным виртуальным миром.
Изображение человеческого мозга, пораженного раком, полученное с помощью магнитно-резонансной томографии (МРТ). Ярко-синяя область указывает на то, что рак распространился на затылочную долю (внизу справа).
Задачей компьютерной графики является разработка эффективных алгоритмов, которые управляют множеством линий, треугольников и многоугольников, составляющих компьютерное изображение. Чтобы на экране отображались реалистичные изображения, каждый объект должен быть представлен как набор плоских единиц. Края должны быть сглажены и текстурированы так, чтобы их основная конструкция из полигонов не была очевидна невооруженным глазом. Во многих приложениях неподвижных изображений недостаточно, и требуется быстрое отображение изображений в реальном времени. Для выполнения анимации в реальном времени необходимы как чрезвычайно эффективные алгоритмы, так и самое современное оборудование. (Дополнительные технические сведения о графических дисплеях см. в см. компьютерную графику.)
Взаимодействие человека с компьютером
Взаимодействие человека с компьютером (HCI) связано с проектированием эффективного взаимодействия между пользователями и компьютерами и созданием интерфейсов, поддерживающих это взаимодействие. HCI происходит на интерфейсе, который включает в себя как программное, так и аппаратное обеспечение. Дизайн пользовательского интерфейса влияет на жизненный цикл программного обеспечения, поэтому он должен выполняться на ранних этапах процесса проектирования. Поскольку пользовательские интерфейсы должны учитывать различные пользовательские стили и возможности, исследования HCI опираются на несколько дисциплин, включая психологию, социологию, антропологию и инженерию. В 1960-х годах пользовательские интерфейсы состояли из компьютерных консолей, которые позволяли оператору напрямую вводить команды, которые можно было выполнить немедленно или в будущем. С появлением более удобных для пользователя персональных компьютеров в 1980-х годах пользовательские интерфейсы стали более сложными, так что пользователь мог «указать и щелкнуть», чтобы отправить команду в операционную систему.
Так возникла область гиперконвергентной инфраструктуры для моделирования, разработки и измерения эффективности различных типов интерфейсов между компьютерным приложением и пользователем, получающим доступ к его службам. Графические интерфейсы позволяют пользователям взаимодействовать с компьютером с помощью таких простых средств, как указание на значок с помощью мыши или прикосновение к нему стилусом или указательным пальцем. Эта технология также поддерживает оконные среды на экране компьютера, что позволяет пользователям одновременно работать с разными приложениями, по одному в каждом окне.
Компьютерная архитектура состоит из правил и методов или процедур, описывающих реализацию и функциональность компьютерных систем.Архитектура строится в соответствии с потребностями пользователя с учетом экономических и финансовых ограничений. Более ранняя архитектура создавалась на бумаге с аппаратной формой.
После встроенной транзисторно-транзисторной логики архитектура строится, тестируется и оформляется в аппаратном виде. Мы можем определить компьютерную архитектуру на основе ее производительности, эффективности, надежности и стоимости компьютерной системы. Он имеет дело со стандартами программного и аппаратного обеспечения. Компьютерная система имеет процессор, память, устройства ввода-вывода и каналы связи, которые к ней подключаются.
Веб-разработка, языки программирования, тестирование программного обеспечения и другое
Типы компьютерной архитектуры
1. Архитектура фон Неймана
Эта архитектура предложена Джоном фон Нейманом. Сейчас компьютеры, которыми мы пользуемся каждый день, основаны на архитектуре фон Неймана. Он основан на некоторых концепциях.
Память у нас есть одна память для чтения/записи, доступная для чтения и записи инструкций и данных. Когда мы говорим о памяти, это не что иное, как единственное место, которое используется для чтения и записи инструкций для данных, и инструкции также присутствуют в ней. Данные и инструкции хранятся в единой памяти чтения/записи внутри компьютерной системы.
Каждая память имеет несколько местоположений, и каждое место имеет уникальный адрес. Мы можем обращаться к содержимому памяти по его расположению независимо от того, какой тип данных и инструкций присутствует в памяти, благодаря чему мы можем читать или записывать любые данные и инструкции. Выполнение всегда происходит последовательно, если изменение не требуется. Например, предположим, что мы выполняем инструкцию со строки 1 по строку 10, но теперь нам нужно выполнить строку 50 вместо строки 11, тогда мы переходим к инструкции 50 и выполняем ее.
Существует шина (адресная шина/шина данных/шина управления), используемая для выполнения инструкций и кода данных. Устройство ввода принимает данные или инструкции, а центральный процессор (ЦП) выполняет одну операцию за раз, либо извлекая данные, либо вводя/извлекая инструкции из памяти. После завершения операции она отправляется на устройство вывода. Блоки управления и логики для обработки операций находятся внутри центрального процессора.
Все в одном пакете для разработки программного обеспечения (600+ курсов, 50+ проектов) 600+ онлайн-курсов | 3000+ часов | Поддающиеся проверке сертификаты | Пожизненный доступ
4,6 (3144 оценки)
2. Гарвардская архитектура
Модифицированная гарвардская архитектура похожа на машину с гарвардской архитектурой и имеет общее адресное пространство для отдельного кэша данных и инструкций. Он имеет цифровые сигнальные процессоры, которые будут выполнять небольшие или сложные аудио- или видеоалгоритмы, и он воспроизводим. Микроконтроллеры имеют небольшое количество памяти программ и данных, что ускоряет обработку за счет параллельного выполнения инструкций и доступа к данным.
На изображении ниже мы можем видеть, что есть отдельные данные и память инструкций, которая является шиной, доступной для выполнения операций. Он полностью содержится в центральном процессоре. Он может выполнять операции ввода-вывода одновременно и имеет отдельный арифметический и логический блок.
3. Архитектура набора инструкций
Чтобы составить архитектуру, необходима архитектура набора инструкций, так как в ней есть набор инструкций, понятных процессору. Он имеет два набора инструкций: один — RISC (компьютер с сокращенным набором инструкций), а второй — CISC (компьютер со сложным набором инструкций).
Компьютерная архитектура с сокращенным набором команд была реализована в 90-х годах компанией IBM. Инструкция имеет несколько адресных режимов, но программы не используют их все, поэтому количество адресных режимов сократилось. Это помогает компилятору легко писать инструкции, выполняемые при увеличении.
Сложная архитектура набора инструкций является корнем компиляторов, поскольку более ранние компиляторы не предназначались для написания программ, поэтому для облегчения программирования были добавлены инструкции. Наилучшая производительность достигается при использовании простых инструкций от ISA.
4. Микроархитектура
Микроархитектура известна как компьютерная организация, и это способ, когда архитектура набора инструкций представляет собой встроенный процессор. Архитектура набора инструкций реализуется с помощью различных микроархитектур и меняется из-за меняющихся технологий.
Микроархитектура работает определенным образом. Он читает инструкцию и декодирует ее, находит параллельные данные для обработки инструкции, а затем обрабатывает инструкцию и генерирует выходные данные.
Применяется в микропроцессорах, микроконтроллерах. Некоторые архитектуры перекрывают несколько инструкций во время выполнения, но в микроархитектуре этого не происходит. Необходимы исполнительные блоки, такие как арифметико-логические блоки, блоки с плавающей запятой, блоки загрузки и т. Д., И они выполняют работу процессора. В системе есть решения микроархитектуры, такие как размер, задержка и возможность подключения памяти.
5. Дизайн системы
Название определяет само себя, дизайн удовлетворит требования пользователя, такие как архитектура, модуль, интерфейсы и данные для системы, и это связано с разработкой продукта. Это процесс получения маркетинговой информации и создания дизайна продукта для производства. Модульные системы создаются путем стандартизации аппаратного и программного обеспечения.
Заключение
Мы узнали об архитектуре компьютера и ее типах. Как работает функциональность, реализация в процессинге. Архитектура набора инструкций необходима для выполнения необходимых инструкций, а обработка данных должна выполняться в разных и одном месте памяти в разных типах компьютерных архитектур. Выполняются операции чтения/записи.
Рекомендуемые статьи
Это руководство по типам компьютерной архитектуры. Здесь мы подробно обсудим основную концепцию и различные типы компьютерной архитектуры. Вы также можете ознакомиться со следующими статьями, чтобы узнать больше –
Некоторые типы компьютерной памяти спроектированы так, чтобы быть очень быстрыми, а это означает, что центральный процессор (ЦП) может очень быстро получить доступ к хранящимся там данным. Другие типы спроектированы так, чтобы быть очень дешевыми, поэтому в них можно экономично хранить большие объемы данных.
Еще одна особенность компьютерной памяти заключается в том, что некоторые типы памяти являются энергонезависимыми, что означает, что они могут хранить данные в течение длительного времени даже при отсутствии питания. А некоторые типы являются изменчивыми, которые часто работают быстрее, но теряют все хранящиеся на них данные при отключении питания.
Компьютерная система создается с использованием комбинации этих типов компьютерной памяти, и точная конфигурация может быть оптимизирована для обеспечения максимальной скорости обработки данных или минимальной стоимости, или некоторого компромисса между ними.
Оглавление
Какие существуют типы компьютерной памяти?
Несмотря на то, что в компьютере существует много типов памяти, основное различие между основной памятью, часто называемой системной памятью, и вторичной памятью, которую чаще называют хранилищем.
Ключевое различие между первичной и вторичной памятью заключается в скорости доступа.
- Основная память включает в себя ПЗУ и ОЗУ и расположена рядом с ЦП на материнской плате компьютера, что позволяет ЦП действительно очень быстро считывать данные из основной памяти. Он используется для хранения данных, которые необходимы ЦП в ближайшее время, чтобы ему не приходилось ждать их доставки.
- Вторичная память, напротив, обычно физически располагается в отдельном устройстве хранения, таком как жесткий диск или твердотельный накопитель (SSD), который подключается к компьютерной системе либо напрямую, либо по сети. Стоимость гигабайта вторичной памяти намного ниже, но скорость чтения и записи значительно ниже.
За несколько периодов развития компьютеров было развернуто множество типов компьютерной памяти, каждый из которых имел свои сильные и слабые стороны.
Основные типы памяти: RAM и ROM
Существует два основных типа основной памяти:
Давайте подробно рассмотрим оба типа памяти.
1) ОЗУ Память компьютера
Акроним RAM связан с тем, что к данным, хранящимся в оперативной памяти, можно обращаться, как следует из названия, в любом произвольном порядке. Или, другими словами, к любому случайному биту данных можно получить доступ так же быстро, как и к любому другому биту.
Самое важное, что нужно знать об ОЗУ, это то, что ОЗУ работает очень быстро, в нее можно не только читать, но и записывать, она энергозависима (поэтому все данные, хранящиеся в ОЗУ, теряются при отключении питания) и, наконец, , это очень дорого по сравнению со всеми типами вторичной памяти по стоимости за гигабайт. Именно из-за относительно высокой стоимости оперативной памяти по сравнению с дополнительными типами памяти большинство компьютерных систем используют как основную, так и дополнительную память.
Данные, необходимые для предстоящей обработки, перемещаются в ОЗУ, где к ним можно получить доступ и изменить их очень быстро, чтобы ЦП не оставался в ожидании.Когда данные больше не требуются, они перемещаются в более медленную, но более дешевую вторичную память, а освободившееся место в ОЗУ заполняется следующим блоком данных, который будет использоваться.
Типы оперативной памяти
- DRAM: DRAM расшифровывается как Dynamic RAM и является наиболее распространенным типом RAM, используемым в компьютерах. Самый старый тип известен как DRAM с одинарной скоростью передачи данных (SDR), но новые компьютеры используют более быструю DRAM с двойной скоростью передачи данных (DDR). DDR поставляется в нескольких версиях, включая DDR2, DDR3 и DDR4, которые обеспечивают лучшую производительность и более энергоэффективны, чем DDR. Однако разные версии несовместимы, поэтому невозможно смешивать DDR2 с DDR3 DRAM в компьютерной системе. DRAM состоит из транзистора и конденсатора в каждой ячейке.
- SRAM: SRAM означает статическое ОЗУ. Это особый тип ОЗУ, который работает быстрее, чем DRAM, но дороже и объемнее, поскольку в каждой ячейке имеется шесть транзисторов. По этим причинам SRAM обычно используется только в качестве кэша данных внутри самого ЦП или в качестве ОЗУ в серверных системах очень высокого класса. Небольшой кэш SRAM для наиболее необходимых данных может привести к значительному повышению скорости работы системы.
Ключевое различие между DRAM и SRAM заключается в том, что SRAM быстрее, чем DRAM, возможно, в два-три раза быстрее, но дороже и громоздче. SRAM обычно доступен в мегабайтах, а DRAM приобретается в гигабайтах.
DRAM потребляет больше энергии, чем SRAM, поскольку ее необходимо постоянно обновлять для поддержания целостности данных, тогда как SRAM, хотя и энергозависимая, не требует постоянного обновления при включении.
2) ROM Память компьютера
ROM означает постоянную память, и это название связано с тем фактом, что, хотя данные могут быть прочитаны из компьютерной памяти этого типа, данные обычно не могут быть записаны в нее. Это очень быстрый тип компьютерной памяти, который обычно устанавливается рядом с процессором на материнской плате.
ПЗУ — это тип энергонезависимой памяти, что означает, что данные, хранящиеся в ПЗУ, сохраняются в памяти, даже когда на нее не подается питание, например, когда компьютер выключен. В этом смысле она похожа на вторичную память, которая используется для долговременного хранения.
Когда компьютер включен, ЦП может начать считывать информацию, хранящуюся в ПЗУ, без необходимости в драйверах или другом сложном программном обеспечении, помогающем ему взаимодействовать. ПЗУ обычно содержит «загрузочный код», который представляет собой базовый набор инструкций, которые компьютер должен выполнить, чтобы узнать об операционной системе, хранящейся во вторичной памяти, и загрузить части операционной системы в первичную память, чтобы он мог запуститься. и будьте готовы к использованию.
ПЗУ также используется в более простых электронных устройствах для хранения прошивки, которая запускается сразу после включения устройства.
Типы ПЗУ
ПЗУ доступно в нескольких различных типах, включая PROM, EPROM и EEPROM.
- PROM PROM расшифровывается как Programmable Read-Only Memory и отличается от настоящего ROM тем, что в то время как ROM программируется (т.е. в него записываются данные) в процессе производства, PROM изготавливается в пустом состоянии, а затем запрограммированы позже с помощью программатора PROM или записи.
- EPROM EPROM расшифровывается как Erasable Programmable Read-Only Memory, и, как следует из названия, данные, хранящиеся в EPROM, можно стереть, а EPROM перепрограммировать. Для стирания EPROM необходимо извлечь его из компьютера и подвергнуть воздействию ультрафиолетового света перед повторной записью.
- EEPROM EEPROM расшифровывается как электрически стираемое программируемое постоянное запоминающее устройство, и различие между EPROM и EEPROM заключается в том, что последнее может быть стерто и записано компьютерной системой, в которой оно установлено. В этом смысле EEPROM строго не читается. Только. Однако во многих случаях процесс записи идет медленно, поэтому обычно это делается только для периодического обновления программного кода, такого как микропрограмма или код BIOS.
Как ни странно, флэш-память NAND (например, в USB-накопителях и твердотельных накопителях) является типом EEPROM, но флэш-память NAND считается вторичной памятью.
Вторичные типы памяти
Вторичная память включает множество различных носителей данных, которые можно напрямую подключить к компьютерной системе. К ним относятся:
Вторичная память также включает:
-
включая флэш-массивы 3D NAND, подключенные к сети хранения данных (SAN)
- Устройства хранения, которые могут быть подключены через обычную сеть (известную как сетевое хранилище или NAS).
Возможно, облачное хранилище также можно назвать вторичной памятью.
Различия между ОЗУ и ПЗУ
ПЗУ:
- Энергонезависимая
- Быстро читать
- Обычно используется в небольших количествах.
- Невозможно быстро записать
- Используется для хранения инструкций по загрузке или прошивки.
- Относительно высокая стоимость хранения одного мегабайта по сравнению с оперативной памятью.
ОЗУ:
- Нестабильный
- Быстро читать и писать
- Используется в качестве системной памяти для хранения данных (включая программный код), которые ЦП должен немедленно обработать
- Относительно дешевое значение в пересчете на мегабайт по сравнению с ПЗУ, но относительно дорогое по сравнению со вторичной памятью.
Какая технология находится между первичной и вторичной памятью?
За последний год или около того был разработан новый носитель памяти под названием 3D XPoint, характеристики которого находятся между первичной и вторичной памятью.
3D XPoint дороже, но быстрее, чем дополнительная память, и дешевле, но медленнее, чем оперативная память. Это также тип энергонезависимой памяти.
Эти характеристики означают, что ее можно использовать в качестве альтернативы ОЗУ в системах, которым требуется огромный объем системной памяти, создание которой с использованием ОЗУ было бы слишком дорого (например, в системах с базами данных в оперативной памяти). Компромисс заключается в том, что такие системы не получают полного прироста производительности за счет использования оперативной памяти.
Поскольку 3D XPoint является энергонезависимым, системы, использующие 3D XPoint в качестве системной памяти, могут быть запущены и снова запущены после сбоя питания или другого прерывания очень быстро, без необходимости считывания всех данных обратно в системную память из вторичная память.
Читайте также: