На одном складе было в 2 раза больше компьютеров, чем на другом

Обновлено: 22.11.2024

«Все современные технологии компьютерных устройств действительно ограничены скоростью движения электрона. Это ограничение довольно фундаментальное, потому что самая быстрая возможная скорость для передачи информации, конечно же, скорость света, а скорость электрона уже значительную долю этого. Мы надеемся на будущие улучшения не столько в скорости компьютерных устройств, сколько в скорости вычислений. Сначала это может показаться одним и тем же, пока вы не поймете, что количество операций, необходимых для компьютерных устройств, выполнение вычислений определяется чем-то другим, а именно алгоритмом.

"Очень эффективный алгоритм может выполнять вычисления намного быстрее, чем неэффективный алгоритм, даже если аппаратное обеспечение компьютера не меняется. Таким образом, дальнейшее совершенствование алгоритмов открывает возможный путь к дальнейшему ускорению работы компьютеров; улучшенная эксплуатация параллельных операций, предварительное вычисление частей задачи и другие подобные приемы — все это возможные способы повышения эффективности вычислений.

"Эти идеи могут звучать так, как будто они не имеют ничего общего с "физическими ограничениями", но на самом деле мы обнаружили, что, принимая во внимание некоторые квантово-механические свойства будущих компьютерных устройств, мы можем разрабатывать новые типы алгоритмов. которые намного, намного более эффективны для определенных вычислений.Мы все еще очень мало знаем об окончательных ограничениях этих «квантовых алгоритмов». "

Сет Ллойд, доцент кафедры машиностроения Массачусетского технологического института, подготовил этот обзор:

«Скорость компьютеров ограничена тем, насколько быстро они могут перемещать информацию из того места, где она сейчас находится, туда, куда она должна перейти дальше, и тем, насколько быстро эта информация может быть обработана после того, как она попадет сюда. Электронный компьютер выполняет вычисления, перемещая электроны. Таким образом, физические ограничения электрона, движущегося через материю, определяют, насколько быстро могут работать такие компьютеры. Однако важно понимать, что информация может перемещаться по компьютеру намного быстрее, чем сами электроны. Рассмотрим садовый шланг: когда вы поворачиваете на кране, сколько времени потребуется, чтобы вода потекла с другого конца? Если шланг пустой, то количество времени равно длине шланга, деленной на скорость, с которой вода стекает по шлангу. Если шланг полон, то количество времени, которое требуется для выхода воды, равно длине шланга, деленной на скорость, с которой импульс распространяется по шлангу, скорость, приблизительно равная скорости звука в воде.

«Провода в электронном компьютере подобны полным шлангам: они уже заполнены электронами. Сигналы проходят по проводам со скоростью света в металле, примерно вдвое меньше скорости света в вакууме. обработка информации в обычном компьютере подобна пустым шлангам: когда они переключаются, электроны должны перемещаться с одной стороны транзистора на другую. В этом случае «тактовая частота» компьютера ограничивается максимальной длиной, которую сигналы должны пройти, разделенные на на скорость света в проводах и на размер транзисторов, деленную на скорость электронов в кремнии.В современных компьютерах эти числа составляют порядка триллионных долей секунды, что значительно меньше, чем реальное время часов в миллиардные доли секунды. во-вторых, компьютер можно сделать быстрее, просто уменьшив его размер. Улучшенные методы миниатюризации были и остаются наиболее важным подходом к ускорению компьютеров в течение многих лет.

«На практике электронные эффекты, отличные от скорости света и скорости электронов, по крайней мере так же важны для ограничения скорости обычных компьютеров. Провода и транзисторы обладают емкостью, или C, которая измеряет их способность накапливать электроны- - и сопротивление, R, которое измеряет степень, в которой они сопротивляются потоку тока. Произведение сопротивления и емкости, RC, дает характеристическую шкалу времени, в течение которой заряд течет от устройства и от него. Когда компоненты компьютера становится меньше, R увеличивается, а C уменьшается, так что обеспечение того, чтобы у каждой части компьютера было достаточно времени, чтобы сделать то, что ему нужно, представляет собой сложный процесс балансировки. настоящее исследование.

"Как отмечалось выше, одним из ограничений скорости работы компьютеров является принцип Эйнштейна, согласно которому сигналы не могут распространяться быстрее скорости света. Поэтому, чтобы сделать компьютеры быстрее, их компоненты должны стать меньше. При нынешних скоростях Благодаря миниатюризации поведение компьютерных компонентов через несколько десятилетий достигнет атомного масштаба, а в атомном масштабе скорость обработки информации ограничена принципом неопределенности Гейзенберга.Недавно исследователи, работающие над «квантовыми компьютерами», сконструировали простые логические устройства, которые хранят и обрабатывают информацию об отдельных фотонах и атомах. Атомы могут быть «переключены» из одного электронного состояния в другое примерно за 10 15 секунд. Однако пока неизвестно, можно ли из таких устройств соединить вместе компьютеры.

"Насколько быстро могут в конечном итоге работать такие компьютеры? Сотрудник IBM Рольф Ландауэр отмечает, что экстраполяция существующей технологии до ее "предельных" пределов – опасная игра: многие предложенные "предельные" пределы уже пройдены. Лучшая стратегия для поиска предельных ограничения на скорость компьютера - подождать и посмотреть, что произойдет."

Роберт А. Саммерс (Robert A. Summers) — профессор электронных инженерных технологий в Государственном университете Вебера в Огдене, штат Юта. В его ответе больше внимания уделяется текущему состоянию компьютерных технологий:

"Физические барьеры, как правило, ограничивают скорость обработки данных компьютерными процессорами с использованием традиционных технологий. Но производители интегральных схем изучают новые, более инновационные методы, которые обещают большие перспективы.< /p>

"Один из подходов основан на постоянном сокращении размера дорожки на микрочипах (то есть размера элементов, которые можно "нарисовать" на каждом чипе). Меньшие дорожки означают, что теперь можно изготовить до 300 миллионов транзисторов. на одном кремниевом чипе. Увеличение плотности транзисторов позволяет интегрировать все больше и больше функций в один чип. Провод длиной в один фут обеспечивает примерно одну наносекунду (миллиардную долю секунды) временной задержки. Если данные необходимо перемещаться всего на несколько миллиметров от одной функции на чипе к другой на том же чипе, время задержки данных может быть уменьшено до пикосекунд (триллионных долей секунды).Чипы с более высокой плотностью также позволяют обрабатывать данные 64 бита за раз, поскольку в отличие от восьми, 16 или, в лучшем случае, 32-разрядных процессоров, которые сейчас доступны в персональных компьютерах типа Pentium.

"Другие производители интегрируют несколько избыточных жизненно важных цепей процессора параллельно на одном чипе. Эта процедура позволяет выполнять несколько этапов обработки данных одновременно, что опять же увеличивает скорость передачи данных. При другом, совершенно другом подходе производители работают над интеграцией всего компьютера, включая всю память, периферийные элементы управления, часы и контроллеры, на одном куске кремния площадью квадратный сантиметр. Этот новый «суперчип» будет полноценным компьютером, в котором не будет только человеческого интерфейса. компьютеры, которые мощнее, чем наши лучшие настольные компьютеры, станут обычным явлением; мы также можем ожидать, что цены будут продолжать падать.

"Еще один вопрос, который рассматривается, — это программное обеспечение, которое будет лучше использовать возможности существующих машин. Удивительная статистика состоит в том, что примерно в 90 % случаев новейшие настольные компьютеры работают в виртуальном режиме 86, т. е. чтобы они работали, как если бы они были древними восьмибитными машинами 8086, несмотря на все их причудливые высокоскоростные 32-битные шины и возможности суперцветной графики.Это ограничение возникает из-за того, что большая часть коммерческого программного обеспечения все еще написана для архитектуры 8086. Windows NT, Windows 95 и подобные — это несколько попыток использовать ПК в качестве 32-разрядных высокопроизводительных машин.

"Что касается других технологий, большинство компаний очень ревностно относятся к своей безопасности, поэтому трудно понять, какие новые вещи на самом деле рассматриваются. Волоконно-оптические и световые системы сделают компьютеры более устойчивыми к шуму, но легкие распространяется точно с той же скоростью, что и электромагнитные импульсы в проводе. Использование фазовых скоростей может принести некоторую пользу для увеличения скорости передачи и обработки данных. Фазовые скорости могут быть намного больше, чем основная несущая волна. Использование этого явления может открыть совершенно новая технология, в которой будут использоваться совершенно другие устройства и способы передачи и обработки данных."

Дополнительную информацию о возможных преимуществах оптических вычислений предоставил Джон Ф. Уолкап, директор Лаборатории оптических систем факультета электротехники Техасского технологического университета в Лаббоке, штат Техас:

«Электронные компьютеры ограничены не только скоростью электронов в материи, но и растущей плотностью взаимосвязей, необходимых для связи электронных вентилей на микрочипах. Уже более 40 лет инженеры-электрики и физики работают над технологиями аналоговые и цифровые оптические вычисления, в которых информация в основном переносится фотонами, а не электронами. Оптические вычисления, в принципе, могут привести к гораздо более высоким скоростям компьютеров. Достигнут значительный прогресс, и процессоры оптических сигналов успешно используются для приложений таких как радары с синтетической апертурой, оптическое распознавание образов, оптическая обработка изображений, улучшение отпечатков пальцев и анализаторы оптического спектра.

«Ранние работы в области обработки и вычислений оптических сигналов носили в основном аналоговый характер. Однако за последние два десятилетия было затрачено много усилий на разработку цифровых оптических процессоров. Основные прорывы были связаны с разработка таких устройств, как VCSELS (лазер с поверхностным излучением с вертикальным резонатором) для ввода данных, SLM (пространственные модуляторы света, такие как жидкокристаллические и акустооптические устройства) для ввода информации о световых лучах и высокоскоростных APD (Avalanche фотодиоды), или так называемые устройства Smart Pixel, для вывода данных. Прежде чем цифровые оптические компьютеры станут широко доступными в продаже, предстоит еще много работы, но в 1990-е годы темпы исследований и разработок ускорились.

"Одной из проблем, с которыми столкнулись оптические компьютеры, является недостаточная точность. Например, эти устройства имеют практический предел точности от восьми до 11 бит в основных операциях. Недавние исследования показали способы решения этой проблемы. Алгоритмы цифрового разделения, которые могут разбивать матрично-векторные продукты на субпродукты с более низкой точностью, работающие в тандеме с кодами исправления ошибок, могут существенно повысить точность операций оптических вычислений.

"Оптические устройства хранения данных также будут важны при разработке оптических компьютеров. В настоящее время изучаются такие технологии, как усовершенствованные оптические компакт-диски, а также технологии оптической памяти с записью/чтением/стиранием. Голографическое хранение данных также сулит большие надежды. для хранения оптических данных высокой плотности в будущих оптических компьютерах или для других приложений, таких как хранение архивных данных.

«Прежде чем цифровые оптические компьютеры получат широкое коммерческое использование, необходимо решить множество проблем при разработке соответствующих материалов и устройств. По крайней мере, в ближайшем будущем оптические компьютеры, скорее всего, будут представлять собой гибридные оптико-электронные системы, использующие предварительная обработка входных данных для вычислений и постобработка выходных данных для исправления ошибок перед выводом результатов. Однако перспектива полностью оптических вычислений остается весьма привлекательной, и цель разработки оптических компьютеров по-прежнему достойна внимания.

Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:

Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.

MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.

PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.

Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

Коммутаторы. Коммутатор – это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.

Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи.Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.

Топология сети

Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:

При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.

В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует много точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации.Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все это упомянуто выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

    — это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые службы в IBM Cloud предоставляют вам сетевые решения для увеличения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.

Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.

Сеть состоит из двух или более компьютеров, связанных между собой для совместного использования ресурсов (например, принтеров и компакт-дисков), обмена файлами или обеспечения электронной связи. Компьютеры в сети могут быть связаны кабелями, телефонными линиями, радиоволнами, спутниками или лучами инфракрасного света.

Два очень распространенных типа сетей включают:

Вы также можете увидеть ссылки на городские сети (MAN), беспроводную локальную сеть (WLAN) или беспроводную глобальную сеть (WWAN).

Локальная сеть

Локальная вычислительная сеть (LAN) – это сеть, ограниченная относительно небольшой территорией. Как правило, это ограничено географической областью, такой как письменная лаборатория, школа или здание.

Компьютеры, подключенные к сети, обычно классифицируются как серверы или рабочие станции. Серверы, как правило, не используются людьми напрямую, а работают непрерывно, предоставляя «услуги» другим компьютерам (и их пользователям-людям) в сети. Предоставляемые услуги могут включать в себя печать и отправку факсов, хостинг программного обеспечения, хранение и совместное использование файлов, обмен сообщениями, хранение и извлечение данных, полный контроль доступа (безопасность) к сетевым ресурсам и многое другое.

Рабочие станции называются так потому, что на них обычно есть человек, который через них взаимодействует с сетью. Рабочими станциями традиционно считались настольные компьютеры, состоящие из компьютера, клавиатуры, дисплея и мыши, или ноутбуки со встроенными клавиатурой, дисплеем и сенсорной панелью. С появлением планшетных компьютеров и устройств с сенсорным экраном, таких как iPad и iPhone, наше определение рабочей станции быстро расширилось и включает эти устройства из-за их способности взаимодействовать с сетью и использовать сетевые службы.

Серверы, как правило, более мощные, чем рабочие станции, хотя конфигурация определяется потребностями. Например, группа серверов может быть расположена в безопасном месте, вдали от людей, и доступ к ним возможен только через сеть. В таких случаях серверы обычно работают без специального дисплея или клавиатуры. Однако размер и скорость серверного процессора (процессоров), жесткого диска и оперативной памяти могут значительно увеличить стоимость системы. С другой стороны, рабочей станции может не требоваться столько места для хранения или оперативной памяти, но для удовлетворения потребностей пользователя может потребоваться дорогостоящий дисплей. Каждый компьютер в сети должен быть соответствующим образом настроен для его использования.

В одной локальной сети компьютеры и серверы могут быть соединены кабелями или по беспроводной сети. Беспроводной доступ к проводной сети возможен благодаря точкам беспроводного доступа (WAP). Эти устройства WAP обеспечивают мост между компьютерами и сетями. Типичная точка доступа может иметь теоретическую пропускную способность для подключения к сети сотен или даже тысяч беспроводных пользователей, хотя практическая пропускная способность может быть намного меньше.

Почти всегда серверы будут подключаться к сети кабелями, потому что кабельные соединения остаются самыми быстрыми. Стационарные рабочие станции (настольные) также обычно подключаются к сети кабелем, хотя стоимость беспроводных адаптеров снизилась до такой степени, что при установке рабочих станций в существующем помещении с неадекватной проводкой может быть проще и дешевле подключиться к сети. использовать беспроводную связь для рабочего стола.

Дополнительную информацию о настройке локальной сети см. в разделах «Топология», «Кабели» и «Оборудование» этого руководства.

Глобальная сеть

Глобальные сети (WAN) соединяют сети в более крупных географических регионах, таких как Флорида, США или по всему миру. Для подключения этого типа глобальной сети можно использовать выделенные трансокеанские кабельные или спутниковые каналы связи.

Используя глобальную сеть, школы Флориды могут связываться с такими местами, как Токио, за считанные секунды, не оплачивая огромные счета за телефон. Два пользователя на расстоянии полмира с рабочими станциями, оборудованными микрофонами и веб-камерами, могут проводить телеконференции в режиме реального времени. WAN — это сложно. Он использует мультиплексоры, мосты и маршрутизаторы для подключения местных и городских сетей к глобальным коммуникационным сетям, таким как Интернет. Однако для пользователей глобальная сеть не будет сильно отличаться от локальной сети.

Преимущества установки школьной сети

Управление доступом пользователей. Современные сети почти всегда имеют один или несколько серверов, что позволяет централизованно управлять пользователями и сетевыми ресурсами, к которым у них есть доступ. Учетные данные пользователя в частной и управляемой сети могут быть такими же простыми, как имя пользователя и пароль, но с постоянно растущим вниманием к проблемам компьютерной безопасности эти серверы имеют решающее значение для обеспечения того, чтобы конфиденциальная информация была доступна только авторизованным пользователям. Хранение и обмен информацией. Компьютеры позволяют пользователям создавать и манипулировать информацией. Информация в сети живет своей собственной жизнью. Сеть предоставляет как место для хранения информации, так и механизмы для обмена этой информацией с другими пользователями сети. Соединения.Администраторы, преподаватели и даже студенты и гости могут быть подключены к сети кампуса. Услуги. Школа может предоставлять такие услуги, как регистрация, школьные справочники, расписания курсов, доступ к исследованиям, учетные записи электронной почты и многие другие. (Помните, что сетевые службы обычно предоставляются серверами). Интернет. Школа может предоставить пользователям сети доступ к Интернету через интернет-шлюз. Вычислительные ресурсы. Школа может предоставить доступ к специализированным вычислительным устройствам, которыми отдельные пользователи обычно не владеют. Например, школьная сеть может иметь высокоскоростные высококачественные принтеры, стратегически расположенные по территории кампуса для использования инструкторами или учащимися. Гибкий доступ. Школьные сети позволяют учащимся получать доступ к своей информации с подключенных устройств по всей школе. Учащиеся могут начать задание в своем классе, сохранить часть его в общедоступной зоне сети, а затем пойти в медиацентр после уроков, чтобы закончить свою работу. Студенты также могут работать совместно через сеть. Вычисление рабочей группы. Программное обеспечение для совместной работы позволяет многим пользователям одновременно работать над документом или проектом. Например, преподаватели, работающие в разных школах округа, могут одновременно вносить свои идеи о новых стандартах учебной программы в один и тот же документ, электронные таблицы или веб-сайт.

Дорогая установка. Крупные сети кампусов могут иметь высокие цены. Кабели, сетевые карты, маршрутизаторы, мосты, брандмауэры, точки беспроводного доступа и программное обеспечение могут стоить дорого, а для установки, безусловно, потребуются услуги технических специалистов. Но благодаря простоте настройки домашних сетей простую сеть с доступом в Интернет можно настроить для небольшого кампуса за полдня. Требуется административное время. Надлежащее обслуживание сети требует значительного времени и опыта. Многие школы установили сеть только для того, чтобы обнаружить, что в бюджете не предусмотрена необходимая административная поддержка. Серверы выходят из строя. Хотя сетевой сервер не более подвержен сбоям, чем любой другой компьютер, когда файловый сервер «выходит из строя», вся сеть может остановиться. Хорошие методы проектирования сети говорят о том, что критически важные сетевые службы (предоставляемые серверами) должны быть избыточными в сети, когда это возможно. Кабели могут порваться. В главе «Топология» представлена ​​информация о различных конфигурациях кабелей. Некоторые конфигурации предназначены для сведения к минимуму неудобств, связанных с оборванным кабелем; при других конфигурациях один оборванный кабель может остановить всю сеть. Безопасность и соответствие. Безопасность сети стоит дорого. Это также очень важно. Школьная сеть, возможно, будет подвергаться более строгим требованиям безопасности, чем корпоративная сеть аналогичного размера, из-за вероятности хранения личной и конфиденциальной информации пользователей сети, опасность которой может усугубляться, если какие-либо пользователи сети являются несовершеннолетними. Большое внимание необходимо уделять сетевым службам, чтобы обеспечить соответствие всего сетевого контента сетевому сообществу, которое он обслуживает.

4202 E. Fowler Ave., EDU162

Тампа, Флорида 33620

Доктор. Рой Винкельман, директор

Эта публикация была подготовлена ​​в рамках гранта Министерства образования Флориды.

Информация, содержащаяся в этом документе, основана на информации, доступной на момент публикации, и может быть изменена. Несмотря на то, что были предприняты все разумные усилия для включения точной информации, Флоридский центр учебных технологий не дает никаких гарантий в отношении точности, полноты или пригодности информации, представленной здесь, для какой-либо конкретной цели. Ничто в данном документе не может быть истолковано как рекомендация использовать какой-либо продукт или услугу в нарушение существующих патентов или прав третьих лиц.

Часто говорят, что сейчас у нас в кармане больше вычислительной мощности, чем у компьютера на борту «Аполлона-11» 50 лет назад. Но так ли это? И если да, то насколько мощнее наши телефоны?

Недавно отреставрированная Комната управления полетами Аполлона в Космическом центре имени Джонсона НАСА в Хьюстоне, штат Техас.

(Фото: Кейси Черри/Getty Images)

Многие из тех, кто уже испытал первую высадку на Луну, хорошо помнят, каково было наблюдать, как Нил Армстронг произносит свою знаменитую цитату: "Это один маленький шаг для человека, но гигантский скачок для человечества". Полвека спустя это событие по-прежнему остается одним из высших достижений человечества. Несмотря на стремительное развитие технологий с тех пор, астронавты не летали на Луну с 1972 года.

Это кажется удивительным.В конце концов, когда мы размышляем об этом историческом событии, часто говорят, что теперь у нас в кармане больше вычислительной мощности, чем было у компьютера на борту «Аполлона-11». Но так ли это? И если да, то насколько мощнее наши телефоны?

На борту «Аполлона-11» находился компьютер под названием «Компьютер управления Аполлоном». У него было 2048 слов памяти, которые можно было использовать для хранения «временных результатов» — данных, которые теряются при отключении питания. Этот тип памяти называется оперативной памятью (RAM). Каждое слово состояло из 16 двоичных цифр (битов), где бит был нулем или единицей. Это означает, что компьютер Apollo имел 32 768 бит оперативной памяти.

Кроме того, у него было 72 КБ постоянной памяти (ПЗУ), что эквивалентно 589 824 битам. Эта память запрограммирована и не может быть изменена после завершения.

Для хранения одного буквенного символа, например "a" или "b", обычно требуется восемь битов. Это означает, что компьютер Аполлона-11 не сможет сохранить эту статью в своей 32 768 бит ОЗУ. Сравните это с вашим мобильным телефоном или MP3-плеером, и вы оцените, что они могут хранить гораздо больше, часто содержа тысячи электронных писем, песен и фотографий.

Память телефона и обработка

Чтобы выразить это более конкретно, современные телефоны обычно имеют 4 ГБ ОЗУ. Это 34 359 738 368 бит. Это более чем в миллион (1 048 576, если быть точным) раз больше памяти, чем было в оперативной памяти компьютера Apollo. iPhone также имеет до 512 ГБ ПЗУ. Это 4 398 046 511 104 бита, что в семь миллионов раз больше, чем у навигационного компьютера.

Но важна не только память. Компьютер «Аполлона-11» имел процессор — электронную схему, которая выполняет операции с внешними источниками данных — с частотой 0,043 МГц. По оценкам, процессор последнего iPhone работает на частоте около 2490 МГц. Apple не афиширует скорость обработки, но ее рассчитали другие. Это означает, что вычислительная мощность iPhone в вашем кармане более чем в 100 000 раз превышает вычислительную мощность компьютера, который 50 лет назад высадил человека на Луну.

А как насчет калькулятора?

Одно дело сравнивать с ультрасовременным телефоном, но как сравнить компьютер Apollo 11 с классическим калькулятором? Texas Instruments была одним из самых известных производителей калькуляторов. В 1998 году они выпустили TI-73, а в 2004 – TI-84.

Если мы сравним два калькулятора с компьютером управления Apollo, мы можем заметить, что у TI-73 немного меньше ПЗУ, но в восемь раз больше ОЗУ. К моменту выпуска TI-84 объем оперативной памяти увеличился в 32 раза по сравнению с компьютером Apollo, а объем ПЗУ увеличился более чем в 14 500 раз.

Что касается скорости обработки, TI-73 был в 140 раз быстрее, чем компьютер Apollo, а TI-84 — почти в 350 раз быстрее.

Удивительно, как простой калькулятор, созданный несколько десятков лет назад, чтобы помогать студентам сдавать экзамены, оказался более мощным, чем компьютер, с помощью которого человек высадился на Луну.

Что, если бы у «Аполлона-11» был современный компьютер?

Компьютер Apollo был ультрасовременным в свое время, но что было бы иначе, если бы при высадке на Луну использовались современные компьютеры, доступные сегодня?

Я подозреваю, что время разработки программного обеспечения было бы намного меньше благодаря инструментам разработки программного обеспечения, доступным сегодня. Было бы намного быстрее написать, отладить и протестировать сложный код, необходимый для доставки человека на Луну.

Пользовательский интерфейс (называемый Display Keyboard [DSKY]) имел интерфейс типа калькулятора, в котором команды нужно было вводить с помощью числовых кодов. Сегодняшний интерфейс будет намного проще в использовании, что может иметь значение в стрессовой ситуации. Почти наверняка у него не будет клавиатуры, но будут использоваться команды смахивания на сенсорном экране. Если бы это было невозможно из-за необходимости носить перчатки, интерфейс мог бы осуществляться с помощью жестов, движений глаз или какого-либо другого интуитивно понятного интерфейса.

Удивительно, но одна вещь, которая сегодня не стала бы лучше, — это скорость связи с Землей. Фактическое время, необходимое для связи, сегодня такое же, как и в 1969 году, то есть со скоростью света, а это означает, что для доставки сообщения с Луны на Землю требуется 1,26 секунды. Но с большими файлами, которые мы сейчас отправляем, и с все больших и больших расстояний, чтобы получить изображение с космического корабля на Землю сегодня потребуется относительно больше времени, чем это было в 1969 году. Тем не менее, это выглядело бы намного красивее благодаря достижениям в технологии камер. .

Возможно, самое большое изменение, которое мы увидим, — это то, что компьютер станет намного более искусственным интеллектом. Я уверен, что полет и посадка космического корабля не были бы отданы исключительно в руки компьютера, но он обладал бы гораздо большей информацией и интеллектом и мог бы принимать намного больше решений, чем компьютер Аполлона-11. сделать в 1969 году. Это могло бы стать огромным облегчением для астронавтов.Армстронг сказал, что по тревожной шкале от 1 до 10 прогулка по Луне равнялась примерно единице, а окончательный спуск на землю — примерно 13.

Итак, давайте закончим признанием того, что потребовалось, чтобы высадить людей на Луну в 1969 году с ограниченной вычислительной мощностью, доступной в то время. Это действительно было выдающимся достижением.

Эта статья изначально была опубликована в The Conversation. Прочтите исходную статью. Грэм Кендалл — профессор компьютерных наук в Ноттингемском университете.

Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

Аналитическая машина, обычно считающаяся первым компьютером, спроектированным и частично построенным английским изобретателем Чарльзом Бэббиджем в 19 веке (он работал над ним до своей смерти в 1871 году). Работая над разностной машиной, более простой вычислительной машиной, заказанной британским правительством, Бэббидж начал придумывать способы ее улучшения. В основном он думал об обобщении его работы, чтобы он мог выполнять другие виды вычислений. К тому времени, когда в 1833 году закончилось финансирование его разностной машины, он задумал нечто гораздо более революционное: вычислительную машину общего назначения, названную аналитической машиной.

Аналитическая машина должна была представлять собой полностью программно-управляемый автоматический механический цифровой компьютер общего назначения. Он сможет выполнять любые вычисления, установленные перед ним. Нет никаких доказательств того, что кто-либо до Бэббиджа когда-либо задумывал такое устройство, не говоря уже о попытках построить его. Машина была спроектирована так, чтобы состоять из четырех компонентов: мельницы, магазина, считывателя и принтера. Эти компоненты сегодня являются основными компонентами каждого компьютера. Мельница была вычислительной единицей, аналогичной центральному процессору (ЦП) в современном компьютере; хранилище было местом, где данные хранились перед обработкой, в точности аналогично памяти и памяти в современных компьютерах; а устройство чтения и принтер были устройствами ввода и вывода.

Как Интернет перемещает информацию между компьютерами? Какая операционная система сделана Microsoft? Войдите в этот тест и проверьте свои знания о компьютерах и операционных системах.

Как и в случае с Difference Engine, этот проект был намного сложнее, чем все, что было создано ранее. Магазин должен был быть достаточно большим, чтобы вместить 1000 50-значных номеров; это было больше, чем емкость любого компьютера, построенного до 1960 года. Машина должна была приводиться в движение паром и управляться одним помощником. Возможности печати также были амбициозными, как и для разностной машины: Бэббидж хотел максимально автоматизировать процесс, вплоть до печати таблиц чисел.

Еще одной новой функцией Analytical Engine стал модуль чтения. Данные (числа) должны были быть введены на перфокартах с использованием технологии чтения карт жаккардового ткацкого станка. Инструкции также нужно было вводить на карточках - еще одна идея, взятая непосредственно у Жозефа-Мари Жаккара. Использование карточек с инструкциями сделало бы его программируемым устройством и гораздо более гибким, чем любая машина, существовавшая в то время. (В 1843 году математик Ада Лавлейс написала в своих заметках для перевода французской статьи об аналитической машине, как можно использовать машину, чтобы следовать программе для вычисления чисел Бернулли. За это ее назвали первым программистом.) Другой элементом программируемости должна была быть его способность выполнять инструкции не в последовательном порядке. Он должен был иметь своего рода способность принимать решения при условной передаче управления, также известной как условное ветвление, благодаря чему он мог бы перейти к другой инструкции в зависимости от значения некоторых данных. Эта чрезвычайно мощная функция отсутствовала во многих первых компьютерах 20 века.

По большинству определений аналитическая машина была настоящим компьютером в том виде, в каком она понимается сегодня, или могла бы быть, если бы Бэббидж снова не столкнулся с проблемами реализации.На самом деле создание его амбициозного проекта было сочтено неосуществимым, учитывая современные технологии, и неспособность Бэббиджа сгенерировать обещанные математические таблицы с помощью своей разностной машины ослабила энтузиазм по поводу дальнейшего государственного финансирования. Действительно, британскому правительству было очевидно, что Бэббидж больше интересовался инновациями, чем составлением таблиц.

Тем не менее, аналитическая машина Бэббиджа была чем-то новым на свете. Его самой революционной особенностью была возможность изменить его работу, изменив инструкции на перфокартах. До этого прорыва все механические вспомогательные средства для вычислений были просто калькуляторами или, как разностная машина, прославленными калькуляторами. Аналитическая машина, хотя и не завершенная, была первой машиной, заслужившей право называться компьютером.

Читайте также: