На каком расстоянии обычно находятся компьютеры в локальной сети?

Обновлено: 30.06.2024

Закон CHIPS не только направляет миллиарды долларов на производство полупроводниковых микросхем в США, но и отражает серьезные изменения в том, как США .

Подробнее об основных функциях, отличительных чертах, сильных и слабых сторонах платформ блокчейна, которые получают максимальную отдачу .

Эксперты высоко оценивают недавно предложенное Комиссией по ценным бумагам и биржам США правило раскрытия информации о климатических рисках, которое требует от компаний выявлять климатические риски .

Несмотря на то, что спецификации программного обеспечения создают новые проблемы для групп безопасности, они предлагают преимущества улучшенной видимости.

В 2021 году службы безопасности столкнулись с беспрецедентными проблемами. Предстоящий год кажется не менее сложным. Вот тенденции кибербезопасности.

Одного обвиняемого обвиняют в использовании печально известного вредоносного ПО Trisis или Triton против компаний энергетического сектора, включая домен .

Новейшее аппаратное обеспечение Cisco и привязка Intersight к общедоступному облаку Kubernetes расширяют возможности гибридных облачных продуктов для клиентов. Но .

Чтобы преодолеть разрыв между командами NetOps и SecOps, сетевые специалисты должны знать основы безопасности, включая различные типы .

Какова реальность новых сетевых технологий? Здесь эксперты определяют риски — реальные или предполагаемые — и преимущества, которые они несут .

Удвоив свою инициативу RPA, ServiceNow представила версию своей платформы Now для Сан-Диего, которая содержит центр RPA и a.

Nvidia представляет новую архитектуру GPU, суперкомпьютеры и чипы, которые вместе помогут разработчикам в создании аппаратного обеспечения.

Intel оптимистично настроена, что ее дорожная карта процессоров может вернуть компанию на первое место, но компания сталкивается со сложной перспективой .

Поставщик базы данных как услуги расширил возможности сбора данных об изменениях в своей облачной базе данных с помощью технологий из своего .

Поставщик платформы "база данных как услуга" стремится облегчить разработчикам создание приложений, управляемых данными, и возврат к исходному состоянию.

Хранилище данных Apache Pinot OLAP с открытым исходным кодом стало проще в развертывании, управлении и эксплуатации в облаке благодаря улучшенному .

Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:

Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.

MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.

PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.

Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

Коммутаторы. Коммутатор — это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.

Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи.Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.

Топология сети

Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:

При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.

В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует множество точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации.Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все упомянутые выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

    — это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые службы в IBM Cloud предоставляют вам сетевые решения для увеличения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.

Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.

Кабель Ethernet подключен к порту коммутатора UniFi

Локальная вычислительная сеть (LAN) состоит из ряда компьютеров, соединенных вместе в сеть в ограниченном месте. Компьютеры в локальной сети подключаются друг к другу через TCP/IP Ethernet или Wi-Fi. Локальная сеть обычно принадлежит какой-либо организации, например школе, офису, ассоциации или церкви.

История ЛВС

ЛАН началась в эфире. Не концепция 19-го века о таинственной невидимой среде между Солнцем и Землей, которая проводит свет — это эфир; тем не менее, не так уж и далеко думать о LAN и эфире в одном контексте.

Вот хронология, которая покажет вам, почему:

1973: Рождение Ethernet

Доктор. Роберт М. Меткалф изобрел Ethernet в 1973 году. Его работа заключалась в том, чтобы объединить все компьютеры в здании в сеть друг с другом и с первым в мире лазерным принтером Xerox. В служебной записке он назвал сетевой метод Ethernet, потому что огромный коаксиальный кабель, соединяющий компьютеры друг с другом, напомнил ему концепцию эфира.

Идея Меткалфа была подсказана ARPANET — оригинальным Интернетом, разработанным Министерством обороны США, — и ALOHAnet, беспроводной радиосетью с коммутацией пакетов для компьютеров, разработанной Гавайским университетом.

Сеть Ethernet позволяла компьютерам отправлять пакеты данных по коаксиальному кабелю для связи друг с другом и с принтером. Он использовал схему обнаружения столкновений. Если узлы в сети сработают одновременно, что приведет к коллизии, мейнфрейм не ответит, и узлы будут ждать случайного числа миллисекунд, чтобы снова сработать.

1977: Первая коммерческая локальная сеть

Четыре года спустя корпорация Datapoint установила первую коммерческую локальную сеть в банке Chase Manhattan Bank в Нью-Йорке. В отличие от Ethernet Меткалфа, локальная сеть Datapoint использовала сеть с подключенным ресурсным компьютером (ARC). В то время как Ethernet использовал обнаружение коллизий, ARC использовал схему передачи маркеров, чтобы избежать одновременных передач узлами. Другими словами, узлы по очереди передавали сигналы вместо того, чтобы полагаться на случайную повторную передачу. Другие компании, такие как IBM, использовали схему передачи токенов, чтобы бороться с Ethernet за превосходство в локальных сетях на протяжении 80-х годов.

1979: Ethernet стал общедоступным

Меткалф основал 3Com для разработки и продажи продуктов Ethernet.

1985: IEEE становится стандартом для локальных сетей

Ethernet стал стандартом для локальных сетей Института инженеров по электротехнике и электронике (IEEE).

1990: Ethernet побеждает локальную сеть

Ethernet выиграл битву за локальные сети, отчасти благодаря переходу на кабель с витой парой, который снижает перекрестные помехи и электромагнитную индукцию. Другими словами, Ethernet был быстрее.

1991: Начало работы над беспроводной локальной сетью

IEEE начал работу над беспроводной локальной сетью (WLAN), основанной на прототипе ALOHAnet.

1997 год: рождение Wi-Fi

IEEE выпустила стандарт 802.11 (Wi-Fi).

Вместо обнаружения столкновений в Wi-Fi используется схема множественного доступа/предотвращения столкновений с контролем несущей (CSMA/CA). Устройство Wi-Fi прослушивает радиоволны, транслируемые по локальной сети, в течение случайного промежутка времени, а когда сеть простаивает, устройство передает сигнал (кадр). Когда получатель получает неповрежденный кадр, он отправляет обратно отправителю подтверждение (ACK). Беспроводные локальные сети (WLAN) и локальные сети могут получать доступ к Интернету или глобальным сетям (WAN) через шлюз

Разница между локальной и глобальной сетью

Глобальная сеть (WAN) – это ряд локальных сетей, соединенных вместе для формирования сети в расширенной области. Глобальные сети обычно эксплуатируются телекоммуникационными компаниями или предприятиями, которым нужна сеть, включающая несколько удаленных мест. Интернет сам по себе является глобальной сетью.

Оптоволоконный кабель является предпочтительной средой передачи для глобальных сетей, поскольку оптоволокно может передавать большие объемы данных на высоких скоростях. Как и в случае с Интернетом, глобальная сеть также может включать городские сети (MAN).

Что такое WAN?

Что такое глобальная сеть?

Глобальная сеть (WAN) – это большая сеть, не привязанная к одному месту. Глобальные сети позволяют устройствам со всего мира общаться и обмениваться информацией.

Что такое преобразование сетевых адресов?

Что такое преобразование сетевых адресов?

Преобразование сетевых адресов (NAT) позволяет частным соединениям использовать общедоступные IP-адреса для навигации в Интернете, но как работает NAT? Какие существуют типы NAT?

Что такое пассивная оптическая сеть?

Что такое пассивная оптическая сеть?

Пассивные оптические сети (PON) обеспечивают высокую скорость широкополосного доступа и оптоволокно для конечных пользователей. ИТ-специалисты должны знать, что такое PON и как она может предоставлять сетевые решения.

LAN-сервер

Сервер локальной сети или файловый сервер — это специализированный высокоскоростной компьютер, на котором размещаются прикладные программы и файлы для компьютеров в сети. Сетевой администратор предоставляет пользователю доступ к приложениям и файлам на сервере локальной сети. Пользователи локальной сети могут загружать приложения и файлы для доступа к ним прямо с жесткого диска своего устройства.

Локальная сеть или Wi-Fi

Сегодня спрашивать, следует ли вам использовать соединение LAN Ethernet или соединение Wi-Fi, все равно что спрашивать, хотите ли вы постоянства или удобства. Gigabit Ethernet способен стабильно передавать данные со скоростью 1000 Мбит/с, а Fast Ethernet — со скоростью 100 Мбит/с. Для сравнения, новейшие стандарты Wi-Fi работают следующим образом:

  • 802.11ah: работает в диапазоне частот ниже 1 ГГц, что означает возможность передачи на большее расстояние, чем другие стандарты. Максимальная скорость для 802.11ah – 347 Мбит/с.
  • 802.11ad: работает в полосе пропускания 60 ГГц со скоростью до 6,7 Гбит/с — очень быстро, но работает только на расстоянии до 3 м от центра доступа.
  • 802.1ac (Wi-Fi 5): работает с полосой пропускания 5 ГГц или 2,4 ГГц, в зависимости от маршрутизатора, со скоростью до 3,46 Гбит/с.

Последние два стандарта намного быстрее, чем Gigabit Ethernet, но Брэдли Митчелл из Lifewire утверждает, что эти теоретические скорости Wi-Fi не соответствуют реальным скоростям, которые вы испытаете. Тем не менее, беспроводные локальные сети позволяют удобно перемещаться с ноутбуками и смартфонами поблизости. У вас не будет стабильной скорости Ethernet, но вы получите довольно высокую скорость и удобство с современными технологиями.

Пример локальной сети: компоненты, необходимые для подключения к локальной сети

Чтобы построить локальную или беспроводную локальную сеть, вам потребуется следующее:

Настройка LAN, WLAN или WAN может быть очень сложной в зависимости от размера организации. Подготовка и получение ИТ-сертификата, такого как CompTIA Network+, докажет работодателям, что у вас есть навыки, необходимые для администрирования компьютерных сетей.

CompTIA Network+ охватывает темы компьютерных сетей, включая настройку локальных сетей. Загрузите цели экзамена, чтобы просмотреть все темы, охватываемые этой сертификацией ИТ.

Сеть состоит из двух или более компьютеров, которые связаны между собой для совместного использования ресурсов (например, принтеров и компакт-дисков), обмена файлами или обеспечения электронной связи. Компьютеры в сети могут быть связаны кабелями, телефонными линиями, радиоволнами, спутниками или лучами инфракрасного света.

Два очень распространенных типа сетей включают:

Вы также можете увидеть ссылки на городские сети (MAN), беспроводную локальную сеть (WLAN) или беспроводную глобальную сеть (WWAN).

Локальная сеть

Локальная вычислительная сеть (LAN) – это сеть, ограниченная относительно небольшой территорией. Как правило, это ограничено географической областью, такой как письменная лаборатория, школа или здание.

Компьютеры, подключенные к сети, обычно классифицируются как серверы или рабочие станции. Серверы, как правило, не используются людьми напрямую, а работают непрерывно, предоставляя «услуги» другим компьютерам (и их пользователям-людям) в сети. Предоставляемые услуги могут включать в себя печать и отправку факсов, хостинг программного обеспечения, хранение и совместное использование файлов, обмен сообщениями, хранение и извлечение данных, полный контроль доступа (безопасность) к сетевым ресурсам и многое другое.

Рабочие станции называются так потому, что на них обычно есть человек, который через них взаимодействует с сетью. Рабочими станциями традиционно считались настольные компьютеры, состоящие из компьютера, клавиатуры, дисплея и мыши, или ноутбуки со встроенными клавиатурой, дисплеем и сенсорной панелью. С появлением планшетных компьютеров и устройств с сенсорным экраном, таких как iPad и iPhone, наше определение рабочей станции быстро расширилось и включает эти устройства из-за их способности взаимодействовать с сетью и использовать сетевые службы.

Серверы, как правило, более мощные, чем рабочие станции, хотя конфигурация определяется потребностями. Например, группа серверов может быть расположена в безопасном месте, вдали от людей, и доступ к ним возможен только через сеть. В таких случаях серверы обычно работают без специального дисплея или клавиатуры. Однако размер и скорость серверного процессора (процессоров), жесткого диска и оперативной памяти могут значительно увеличить стоимость системы. С другой стороны, рабочей станции может не требоваться столько места для хранения или оперативной памяти, но для удовлетворения потребностей пользователя может потребоваться дорогостоящий дисплей.Каждый компьютер в сети должен быть соответствующим образом настроен для его использования.

В одной локальной сети компьютеры и серверы могут быть соединены кабелями или по беспроводной сети. Беспроводной доступ к проводной сети возможен благодаря точкам беспроводного доступа (WAP). Эти устройства WAP обеспечивают мост между компьютерами и сетями. Типичная точка доступа может иметь теоретическую пропускную способность для подключения к сети сотен или даже тысяч беспроводных пользователей, хотя практическая пропускная способность может быть намного меньше.

Почти всегда серверы будут подключаться к сети кабелями, потому что кабельные соединения остаются самыми быстрыми. Стационарные рабочие станции (настольные) также обычно подключаются к сети кабелем, хотя стоимость беспроводных адаптеров снизилась до такой степени, что при установке рабочих станций в существующем помещении с неадекватной проводкой может быть проще и дешевле подключиться к сети. использовать беспроводную связь для рабочего стола.

Дополнительную информацию о настройке локальной сети см. в разделах «Топология», «Кабели» и «Оборудование» этого руководства.

Глобальная сеть

Глобальные сети (WAN) соединяют сети в более крупных географических регионах, таких как Флорида, США или по всему миру. Для подключения этого типа глобальной сети можно использовать выделенные трансокеанские кабельные или спутниковые каналы связи.

Используя глобальную сеть, школы Флориды могут связываться с такими местами, как Токио, за считанные секунды, не оплачивая огромные счета за телефон. Два пользователя на расстоянии полмира с рабочими станциями, оборудованными микрофонами и веб-камерами, могут проводить телеконференции в режиме реального времени. WAN — это сложно. Он использует мультиплексоры, мосты и маршрутизаторы для подключения местных и городских сетей к глобальным коммуникационным сетям, таким как Интернет. Однако для пользователей глобальная сеть не будет сильно отличаться от локальной сети.

Преимущества установки школьной сети

Управление доступом пользователей. Современные сети почти всегда имеют один или несколько серверов, что позволяет централизованно управлять пользователями и сетевыми ресурсами, к которым у них есть доступ. Учетные данные пользователя в частной и управляемой сети могут быть такими же простыми, как имя пользователя и пароль, но с постоянно растущим вниманием к проблемам компьютерной безопасности эти серверы имеют решающее значение для обеспечения того, чтобы конфиденциальная информация была доступна только авторизованным пользователям. Хранение и обмен информацией. Компьютеры позволяют пользователям создавать и манипулировать информацией. Информация в сети живет своей собственной жизнью. Сеть предоставляет как место для хранения информации, так и механизмы для обмена этой информацией с другими пользователями сети. Соединения. Администраторы, преподаватели и даже студенты и гости могут быть подключены к сети кампуса. Услуги. Школа может предоставлять такие услуги, как регистрация, школьные справочники, расписания курсов, доступ к исследованиям, учетные записи электронной почты и многие другие. (Помните, что сетевые службы обычно предоставляются серверами). Интернет. Школа может предоставить пользователям сети доступ к Интернету через интернет-шлюз. Вычислительные ресурсы. Школа может предоставить доступ к специализированным вычислительным устройствам, которыми отдельные пользователи обычно не владеют. Например, школьная сеть может иметь высокоскоростные высококачественные принтеры, стратегически расположенные по территории кампуса для использования инструкторами или учащимися. Гибкий доступ. Школьные сети позволяют учащимся получать доступ к своей информации с подключенных устройств по всей школе. Учащиеся могут начать задание в своем классе, сохранить часть его в общедоступной зоне сети, а после уроков пойти в медиацентр, чтобы закончить работу. Студенты также могут работать совместно через сеть. Вычисление рабочей группы. Программное обеспечение для совместной работы позволяет многим пользователям одновременно работать над документом или проектом. Например, преподаватели, работающие в разных школах округа, могут одновременно вносить свои идеи о новых стандартах учебной программы в один и тот же документ, электронные таблицы или веб-сайт.

Дорогая установка. Крупные сети кампусов могут иметь высокие цены. Кабели, сетевые карты, маршрутизаторы, мосты, брандмауэры, точки беспроводного доступа и программное обеспечение могут стоить дорого, а для установки, безусловно, потребуются услуги технических специалистов. Но благодаря простоте настройки домашних сетей простую сеть с доступом в Интернет можно настроить для небольшого кампуса за полдня. Требуется административное время. Надлежащее обслуживание сети требует значительного времени и опыта. Многие школы установили сеть только для того, чтобы обнаружить, что в бюджете не предусмотрена необходимая административная поддержка. Серверы выходят из строя. Хотя сетевой сервер не более подвержен сбоям, чем любой другой компьютер, когда файловый сервер «выходит из строя», вся сеть может остановиться. Хорошие методы проектирования сети говорят о том, что критически важные сетевые службы (предоставляемые серверами) должны быть избыточными в сети, когда это возможно. Кабели могут порваться. В главе «Топология» представлена ​​информация о различных конфигурациях кабелей.Некоторые конфигурации предназначены для сведения к минимуму неудобств, связанных с оборванным кабелем; при других конфигурациях один оборванный кабель может остановить всю сеть. Безопасность и соответствие. Безопасность сети стоит дорого. Это также очень важно. Школьная сеть, возможно, будет подвергаться более строгим требованиям безопасности, чем корпоративная сеть аналогичного размера, из-за вероятности хранения личной и конфиденциальной информации пользователей сети, опасность которой может усугубляться, если какие-либо пользователи сети являются несовершеннолетними. Большое внимание необходимо уделять сетевым службам, чтобы обеспечить соответствие всего сетевого контента сетевому сообществу, которое он обслуживает.

4202 E. Fowler Ave., EDU162

Тампа, Флорида 33620

Доктор. Рой Винкельман, директор

Эта публикация была подготовлена ​​в рамках гранта Министерства образования Флориды.

Информация, содержащаяся в этом документе, основана на информации, доступной на момент публикации, и может быть изменена. Несмотря на то, что были предприняты все разумные усилия для включения точной информации, Флоридский центр учебных технологий не дает никаких гарантий в отношении точности, полноты или пригодности информации, представленной здесь, для какой-либо конкретной цели. Ничто в данном документе не может быть истолковано как рекомендация использовать какой-либо продукт или услугу в нарушение существующих патентов или прав третьих лиц.

Как работает Интернет?

С чего начать? Интернет-адреса

Поскольку Интернет представляет собой глобальную сеть компьютеров, каждый компьютер, подключенный к Интернету, должен иметь уникальный адрес. Интернет-адреса имеют вид nnn.nnn.nnn.nnn, где nnn должно быть числом от 0 до 255. Этот адрес известен как IP-адрес. (IP означает Интернет-протокол; подробнее об этом позже.)

На рисунке ниже показаны два компьютера, подключенных к Интернету. ваш компьютер с IP-адресом 1.2.3.4 и другой компьютер с IP-адресом 5.6.7.8. Интернет представлен как абстрактный объект между ними. (По мере продвижения этой статьи Интернет-часть Диаграммы 1 будет объясняться и перерисовываться несколько раз по мере раскрытия деталей Интернета.)

Диаграмма 1

Если вы подключаетесь к Интернету через интернет-службу Провайдер (ISP), вам обычно назначается временный IP-адрес на время вашего сеанса телефонного подключения. Если вы подключаетесь к Интернету из локальной сети (LAN), ваш компьютер может иметь постоянный IP-адрес или может получить временный IP-адрес от сервера DHCP (Dynamic Host Configuration Protocol). В любом случае, если вы подключены к Интернету, ваш компьютер имеет уникальный IP-адрес.

Стеки и пакеты протоколов


Уровень протокола Комментарии
Приложение Уровень протоколов Протоколы, специфичные для таких приложений, как WWW, электронная почта, FTP и т. д.
Уровень протокола управления передачей TCP направляет пакеты определенному приложению на компьютере, используя номер порта.
Уровень протокола Интернета IP направляет пакеты на определенный компьютер, используя IP-адрес .
Аппаратный уровень Преобразует двоичные пакетные данные в сетевые сигналы и обратно.
(Например, сетевая карта Ethernet, модем для телефонных линий и т. д. .)

Если бы мы пошли по пути, то сообщение "Привет, компьютер 5.6.7.8!" брал с нашего компа на комп с IP адресом 5.6.7.8, получилось бы примерно так:

<ПР>
  • Сообщение будет начинаться с вершины стека протоколов на вашем компьютере и продвигаться вниз.
  • Если отправляемое сообщение длинное, каждый уровень стека, через который проходит сообщение, может разбивать сообщение на более мелкие фрагменты данных. Это связано с тем, что данные, отправляемые через Интернет (и большинство компьютерных сетей), отправляются управляемыми фрагментами. В Интернете эти фрагменты данных называются пакетами .
  • Пакеты будут проходить через прикладной уровень и переходить на уровень TCP. Каждому пакету присваивается номер порта. Порты будут объяснены позже, но достаточно сказать, что многие программы могут использовать стек TCP/IP и отправлять сообщения. Нам нужно знать, какая программа на целевом компьютере должна получить сообщение, потому что она будет прослушивать определенный порт.
  • После прохождения уровня TCP пакеты переходят на уровень IP. Здесь каждый пакет получает адрес назначения 5.6.7.8.
  • Теперь, когда у наших пакетов сообщений есть номер порта и IP-адрес, они готовы к отправке через Интернет. Аппаратный уровень заботится о преобразовании наших пакетов, содержащих буквенный текст нашего сообщения, в электронные сигналы и их передаче по телефонной линии.
  • На другом конце телефонной линии ваш интернет-провайдер имеет прямое подключение к Интернету.Маршрутизатор провайдера проверяет адрес назначения в каждом пакете и определяет, куда его отправить. Часто следующей остановкой пакета является другой маршрутизатор. Подробнее о маршрутизаторах и интернет-инфраструктуре позже.
  • В конце концов пакеты достигают компьютера 5.6.7.8. Здесь пакеты начинаются с нижней части стека TCP/IP целевого компьютера и идут вверх.
  • По мере продвижения пакетов вверх по стеку все данные маршрутизации, добавленные стеком отправляющего компьютера (например, IP-адрес и номер порта), удаляются из пакетов.
  • Когда данные достигают вершины стека, пакеты снова собираются в исходную форму: "Привет, компьютер 5.6.7.8!"
  • Сетевая инфраструктура

    Теперь вы знаете, как пакеты передаются с одного компьютера на другой через Интернет. Но что между ними? Из чего на самом деле состоит Интернет? Давайте посмотрим на другую диаграмму:

    Диаграмма 3

    Здесь мы видим диаграмму 1, перерисованную с большей детализацией. Физическое подключение через телефонную сеть к интернет-провайдеру было несложно догадаться, но помимо этого могло быть какое-то объяснение.

    У поставщика услуг Интернета есть пул модемов для своих клиентов с коммутируемым доступом. Это управляется каким-либо компьютером (обычно выделенным), который управляет потоком данных от модемного пула к магистральному или выделенному маршрутизатору. Эту настройку можно назвать сервером портов, поскольку она «обслуживает» доступ к сети. Здесь также обычно собирается информация об оплате и использовании.

    После того как ваши пакеты проходят через телефонную сеть и локальное оборудование вашего интернет-провайдера, они перенаправляются на магистральную сеть интернет-провайдера или на магистральную сеть, у которой интернет-провайдер покупает полосу пропускания. Отсюда пакеты обычно проходят через несколько маршрутизаторов и по нескольким магистралям, выделенным линиям и другим сетям, пока не найдут пункт назначения — компьютер с адресом 5.6.7.8. Но было бы неплохо, если бы мы знали точный маршрут, по которому наши пакеты проходят через Интернет? Как оказалось, способ есть.

    Интернет-инфраструктура

    Магистральная сеть Интернета состоит из множества крупных сетей, которые соединяются друг с другом. Эти крупные сети известны как поставщики сетевых услуг или NSP. Одними из крупных NSP являются UUNet, CerfNet, IBM, BBN Planet, SprintNet, PSINet и другие. Эти сети взаимодействуют друг с другом для обмена пакетным трафиком. Каждый NSP должен подключаться к трем точкам доступа к сети или NAP. В точках NAP пакетный трафик может переходить из одной магистрали NSP в магистральную сеть другого NSP. NSP также соединяются на городских биржах или MAE. MAE служат той же цели, что и NAP, но находятся в частной собственности. NAP были первоначальными точками подключения к Интернету. И NAP, и MAE называются точками обмена интернет-трафиком или IX. NSP также продают полосу пропускания более мелким сетям, таким как интернет-провайдеры и более мелкие поставщики полосы пропускания. На рисунке ниже показана эта иерархическая инфраструктура.

    Диаграмма 4

    Это не точное представление реального фрагмента Интернета. Диаграмма 4 предназначена только для демонстрации того, как поставщики сетевых услуг могут взаимодействовать друг с другом и более мелкими интернет-провайдерами. Ни один из компонентов физической сети не показан на диаграмме 4 так, как на диаграмме 3. Это связано с тем, что магистральная инфраструктура отдельного NSP сама по себе представляет собой сложный рисунок. Большинство поставщиков сетевых услуг публикуют карты своей сетевой инфраструктуры на своих веб-сайтах, и их легко найти. Нарисовать реальную карту Интернета было бы почти невозможно из-за его размера, сложности и постоянно меняющейся структуры.

    Иерархия интернет-маршрутизации

    Как же пакеты попадают в Интернет? Каждый ли компьютер, подключенный к Интернету, знает, где находятся другие компьютеры? Пакеты просто «рассылаются» на каждый компьютер в Интернете? Ответ на оба предыдущих вопроса — «нет». Ни один компьютер не знает, где находятся другие компьютеры, и пакеты не отправляются каждому компьютеру. Информация, используемая для доставки пакетов к месту назначения, содержится в таблицах маршрутизации, хранящихся на каждом маршрутизаторе, подключенном к Интернету.

    Маршрутизаторы — это коммутаторы пакетов. Маршрутизатор обычно подключается между сетями для маршрутизации пакетов между ними. Каждый маршрутизатор знает о своих подсетях и используемых ими IP-адресах. Маршрутизатор обычно не знает, какие IP-адреса находятся «над ним». Изучите диаграмму 5 ниже. Черные ящики, соединяющие магистрали, — это маршрутизаторы. Более крупные магистрали NSP наверху подключаются к NAP. Под ними несколько подсетей, а под ними еще подсетей. Внизу две локальные сети с подключенными компьютерами.

    Диаграмма 5

    Когда пакет поступает на маршрутизатор, маршрутизатор проверяет IP-адрес, помещенный туда уровнем протокола IP на исходном компьютере.Маршрутизатор проверяет свою таблицу маршрутизации. Если сеть, содержащая IP-адрес, найдена, пакет отправляется в эту сеть. Если сеть, содержащая IP-адрес, не найдена, маршрутизатор отправляет пакет по маршруту по умолчанию, обычно вверх по магистральной иерархии к следующему маршрутизатору. Будем надеяться, что следующий маршрутизатор будет знать, куда отправить пакет. Если это не так, пакет снова направляется вверх, пока не достигнет магистрали NSP. Маршрутизаторы, подключенные к магистралям NSP, содержат самые большие таблицы маршрутизации, и здесь пакет будет перенаправлен на правильную магистраль, откуда он начнет свое путешествие «вниз» через все более и более мелкие сети, пока не найдет пункт назначения.

    Доменные имена и разрешение адресов

    Многие компьютеры, подключенные к Интернету, содержат часть базы данных DNS и программное обеспечение, позволяющее другим пользователям получать к ней доступ. Эти компьютеры называются DNS-серверами. Ни один DNS-сервер не содержит всю базу данных; они содержат только его подмножество. Если DNS-сервер не содержит доменного имени, запрошенного другим компьютером, DNS-сервер перенаправляет запрашивающий компьютер на другой DNS-сервер.

    Диаграмма 6

    Служба доменных имен имеет иерархическую структуру, аналогичную к иерархии IP-маршрутизации. Компьютер, запрашивающий разрешение имени, будет перенаправлен «вверх» по иерархии до тех пор, пока не будет найден DNS-сервер, способный разрешить доменное имя в запросе. На рис. 6 показана часть иерархии. В верхней части дерева находятся корни доменов. Некоторые из старых, более распространенных доменов видны вверху. Что не показано, так это множество DNS-серверов по всему миру, которые формируют остальную часть иерархии.

    При настройке подключения к Интернету (например, для локальной сети или удаленного доступа к сети в Windows) в процессе установки обычно указываются один первичный и один или несколько вторичных DNS-серверов. Таким образом, любые интернет-приложения, которым требуется разрешение доменных имен, смогут работать правильно. Например, когда вы вводите веб-адрес в свой веб-браузер, браузер сначала подключается к вашему основному DNS-серверу. После получения IP-адреса для введенного вами доменного имени браузер подключается к целевому компьютеру и запрашивает нужную веб-страницу.

    Проверить — отключить DNS в Windows Если вы используете Windows 95/NT и имеете доступ к Интернету, вы можете просмотреть свой DNS сервер(ы) и даже отключить их.

    Если вы используете удаленный доступ к сети:
    Откройте окно удаленного доступа к сети (которое можно найти в проводнике Windows под дисководом компакт-дисков и над сетевым окружением). Щелкните правой кнопкой мыши свое подключение к Интернету и выберите «Свойства». Внизу окна свойств подключения нажмите Настройки TCP/IP. кнопка.

    Если у вас есть постоянное подключение к Интернету:
    щелкните правой кнопкой мыши Сетевое окружение и выберите Свойства. Щелкните Свойства TCP/IP. Выберите вкладку Конфигурация DNS вверху.

    Теперь вы должны посмотреть на IP-адреса ваших DNS-серверов. Здесь вы можете отключить DNS или установить для своих DNS-серверов значение 0.0.0.0. (Сначала запишите IP-адреса ваших DNS-серверов. Возможно, вам также придется перезагрузить Windows.) Теперь введите адрес в веб-браузере. Браузер не сможет разрешить доменное имя, и вы, вероятно, получите неприятное диалоговое окно, объясняющее, что DNS-сервер не найден. Однако, если вы введете соответствующий IP-адрес вместо имени домена, браузер сможет получить нужную веб-страницу. (Используйте ping для получения IP-адреса перед отключением DNS.) Другие операционные системы Microsoft аналогичны.

    Пересмотр интернет-протоколов

    Как упоминалось ранее в разделе о стеках протоколов, можно предположить, что в Интернете используется множество протоколов. Это верно; существует множество протоколов связи, необходимых для работы Интернета. К ним относятся протоколы TCP и IP, протоколы маршрутизации, протоколы управления доступом к среде, протоколы прикладного уровня и т. д. В следующих разделах описаны некоторые из наиболее важных и часто используемых протоколов в Интернете. Сначала обсуждаются протоколы более высокого уровня, а затем протоколы более низкого уровня.

    Когда вы вводите URL-адрес в веб-браузере, происходит следующее:

    Протоколы приложений: SMTP и электронная почта

    Когда вы открываете почтовый клиент для чтения электронной почты, обычно происходит следующее:

    <ПР>
  • Почтовый клиент (Netscape Mail, Lotus Notes, Microsoft Outlook и т. д.) открывает соединение со своим почтовым сервером по умолчанию. IP-адрес или доменное имя почтового сервера обычно настраиваются при установке почтового клиента.
  • Почтовый сервер всегда будет передавать первое сообщение, чтобы идентифицировать себя.
  • Клиент отправит команду SMTP HELO, на которую сервер ответит сообщением 250 OK.
  • В зависимости от того, проверяет ли клиент почту, отправляет почту и т. д.соответствующие SMTP-команды будут отправлены на сервер, который ответит соответствующим образом.
  • Эта транзакция запроса/ответа будет продолжаться до тех пор, пока клиент не отправит SMTP-команду QUIT. Затем сервер попрощается, и соединение будет закрыто.
  • Протокол управления передачей

    Под прикладным уровнем в стеке протоколов находится уровень TCP. Когда приложения открывают соединение с другим компьютером в Интернете, отправляемые ими сообщения (используя определенный протокол прикладного уровня) передаются по стеку на уровень TCP. TCP отвечает за маршрутизацию протоколов приложений к правильному приложению на целевом компьютере. Для этого используются номера портов. Порты можно рассматривать как отдельные каналы на каждом компьютере. Например, вы можете просматривать веб-страницы, читая электронную почту. Это связано с тем, что эти два приложения (веб-браузер и почтовый клиент) использовали разные номера портов. Когда пакет поступает на компьютер и продвигается вверх по стеку протоколов, уровень TCP решает, какое приложение получит пакет, основываясь на номере порта.

    TCP работает следующим образом:

    <УЛ>
  • Когда уровень TCP получает данные протокола прикладного уровня сверху, он сегментирует их на управляемые «фрагменты», а затем добавляет к каждому «фрагменту» заголовок TCP с определенной информацией TCP. Информация, содержащаяся в заголовке TCP, включает номер порта приложения, которому необходимо отправить данные.
  • Когда уровень TCP получает пакет от нижележащего уровня IP, уровень TCP удаляет данные заголовка TCP из пакета, при необходимости выполняет некоторую реконструкцию данных, а затем отправляет данные нужному приложению, используя номер порта. из заголовка TCP.
  • TCP не является текстовым протоколом. TCP — это ориентированная на соединение, надежная служба потока байтов. Ориентированность на соединение означает, что два приложения, использующие TCP, должны сначала установить соединение перед обменом данными. TCP надежен, потому что для каждого полученного пакета отправителю отправляется подтверждение доставки. TCP также включает в свой заголовок контрольную сумму для проверки полученных данных на наличие ошибок. Заголовок TCP выглядит следующим образом:

    Диаграмма 7

    Обратите внимание, что здесь нет места для IP-адреса в заголовке TCP. Это потому, что TCP ничего не знает об IP-адресах. Задача TCP заключается в надежной передаче данных уровня приложения от приложения к приложению. Задача передачи данных от компьютера к компьютеру — это работа IP.

    Проверьте это — общеизвестные номера интернет-портов Ниже перечислены номера портов для некоторых наиболее часто используемых интернет-сервисов.

    Интернет-протокол

    В отличие от TCP, IP является ненадежным протоколом без установления соединения. IP не важно, дойдет ли пакет до адресата или нет. IP также не знает о соединениях и номерах портов. Работа IP также заключается в отправке и маршрутизации пакетов на другие компьютеры. IP-пакеты являются независимыми объектами и могут поступать не по порядку или вообще не поступать. Задача TCP состоит в том, чтобы убедиться, что пакеты прибывают и находятся в правильном порядке. Единственное, что у IP общего с TCP, — это то, как он получает данные и добавляет свою собственную информацию заголовка IP к данным TCP. Заголовок IP выглядит следующим образом:

    Диаграмма 8

    Выше мы видим IP-адреса отправителя и принимающие компьютеры в заголовке IP. Ниже показано, как выглядит пакет после прохождения через прикладной уровень, уровень TCP и уровень IP. Данные прикладного уровня сегментируются на уровне TCP, добавляется заголовок TCP, пакет передается на уровень IP, добавляется заголовок IP, а затем пакет передается через Интернет.

    Подведение итогов

    Теперь вы знаете, как работает Интернет. Но как долго он будет оставаться таким? Версия IP, используемая в настоящее время в Интернете (версия 4), позволяет использовать только 232 адреса. В конце концов свободных IP-адресов не останется. Удивлен? Не волнуйтесь. IP версии 6 в настоящее время тестируется на исследовательской базе консорциумом исследовательских институтов и корпораций. И после этого? Кто знает. Интернет прошел долгий путь с момента его создания в качестве исследовательского проекта министерства обороны. Никто на самом деле не знает, чем станет Интернет. Однако одно можно сказать наверняка. Интернет объединит мир, как никакой другой механизм. Информационная эра в самом разгаре, и я рад быть ее частью.

    Рус Шулер, 1998 г.
    Обновления 2002 г.

    Ресурсы

    Ниже приведены некоторые интересные ссылки, связанные с некоторыми обсуждаемыми темами. (Надеюсь, они все еще работают. Все открываются в новом окне.)

    Библиография

    Следующие книги являются отличным источником информации и очень помогли в написании этой статьи. Я считаю, что книга Стивенса является лучшим справочником по TCP/IP и может считаться библией Интернета.Книга Шелдона охватывает гораздо более широкий круг вопросов и содержит огромное количество информации о сетях.

    Читайте также: