Кратковременное сообщение о внутренней памяти компьютера

Обновлено: 21.11.2024

План North American Electric Reliability Corporation по защите критически важной инфраструктуры (NERC CIP) представляет собой набор стандартов.

Структура управления рисками ISO 31000 – это международный стандарт, который предоставляет компаниям рекомендации и принципы для .

Чистый риск относится к рискам, которые находятся вне контроля человека и приводят к убыткам или их отсутствию без возможности получения финансовой выгоды.

Экранированная подсеть или брандмауэр с тройным подключением относится к сетевой архитектуре, в которой один брандмауэр используется с тремя сетями .

Метаморфное и полиморфное вредоносное ПО – это два типа вредоносных программ (вредоносных программ), код которых может изменяться по мере их распространения.

В контексте вычислений Windows и Microsoft Active Directory (AD) идентификатор безопасности (SID) — это уникальное значение, которое равно .

Медицинская транскрипция (МТ) – это ручная обработка голосовых сообщений, продиктованных врачами и другими медицинскими работниками.

Электронное отделение интенсивной терапии (eICU) — это форма или модель телемедицины, в которой используются самые современные технологии.

Защищенная медицинская информация (PHI), также называемая личной медицинской информацией, представляет собой демографическую информацию, медицинскую .

Снижение рисков – это стратегия подготовки к угрозам, с которыми сталкивается бизнес, и уменьшения их последствий.

Отказоустойчивая технология — это способность компьютерной системы, электронной системы или сети обеспечивать бесперебойное обслуживание.

Синхронная репликация — это процесс копирования данных по сети хранения, локальной или глобальной сети, поэтому .

Интерфейс управления облачными данными (CDMI) – это международный стандарт, определяющий функциональный интерфейс, используемый приложениями.

Износ флэш-памяти NAND — это пробой оксидного слоя внутри транзисторов с плавающим затвором флэш-памяти NAND.

Выносливость при записи — это количество циклов программирования/стирания (P/E), которое может быть применено к блоку флэш-памяти перед сохранением .

Существует множество элементов, обеспечивающих оптимальную работу компьютера. Для правильной работы компьютерам требуется память для хранения информации, которую центральный процессор использует для обработки и выполнения инструкций. Если вы заинтересованы в карьере в области компьютерных наук, подумайте о том, чтобы узнать больше о компьютерной памяти и ее роли в цифровых устройствах. В этой статье мы обсудим, что такое компьютерная память, почему она важна и 14 типов компьютерной памяти.

Что такое память компьютера?

Память компьютера – это внутренняя или внешняя система, в которой хранятся данные и инструкции на устройстве. Он состоит из нескольких ячеек, называемых ячейками памяти, каждая из которых имеет уникальный идентификационный номер. Центральный процессор (ЦП), который читает и выполняет инструкции, выбирает определенные ячейки для чтения или записи данных в зависимости от задачи, которую пользователь просит выполнить компьютер. Существует множество типов памяти, которые вы можете использовать, в зависимости от того, сколько вам нужно, и от типа используемого устройства.

Почему так важна память компьютера?

Память компьютера важна, поскольку без нее устройства не могут выполнять задачи. Память обеспечивает правильное включение и работу устройства. Кроме того, он обеспечивает быструю работу вашего компьютера и позволяет использовать несколько приложений одновременно. Если вы хотите сохранить данные для последующего использования, вы также можете использовать определенные типы для этой цели.

14 типов компьютерной памяти

Вот список из 14 типов компьютерной памяти:

1. Внутренний

Во внутренней памяти, также известной как основная память, хранятся небольшие объемы данных, к которым компьютер может получить доступ, пока вы активно его используете. Внутренняя память состоит из микросхем, подключенных к материнской плате, и для ее использования ее необходимо подключить непосредственно к устройству. Существует два основных типа внутренней памяти, называемые ОЗУ и ПЗУ, и у них есть свои подмножества памяти.

2. ОЗУ

Оперативная память (ОЗУ) — это основная внутренняя память центрального процессора (ЦП). Ваше электронное устройство использует его для хранения временных данных. Он делает это, предоставляя приложениям место для хранения данных, которые вы активно используете, чтобы они могли быстро получить доступ к данным. Объем оперативной памяти на вашем устройстве определяет его производительность и скорость. Если у вас недостаточно оперативной памяти, он может медленно обрабатывать программы, что может повлиять на вывод и скорость, с которой вы можете использовать компьютер.

Оперативная память также имеет "энергозависимую память", потому что она теряет хранящиеся в ней данные при выключении устройства. Например, если вы пользуетесь интернет-браузером на своем ноутбуке, а компьютер выключается, возможно, он не сохранил веб-страницы, которые вы использовали ранее, потому что оперативная память хранит эту информацию только временно.

3. DRAM

Динамическая оперативная память (DRAM) — это один из двух особых типов оперативной памяти, используемых в современных устройствах, таких как ноутбуки, настольные компьютеры, портативные устройства и игровые системы.Это более доступный из двух типов ОЗУ и производит память большой емкости. Он состоит из двух компонентов, транзисторов и конденсаторов, которые требуют подзарядки каждые несколько секунд, чтобы сохранить данные. Как и оперативная память, она также теряет данные при отключении питания и имеет энергозависимую память.

4. SRAM

Статическая оперативная память (SRAM) — это второй тип RAM, в котором данные хранятся до тех пор, пока в системе есть питание, в отличие от DRAM, которая обновляется гораздо чаще. Поскольку он держит энергию дольше, он дороже, чем DRAM, что обычно делает его менее широко используемым. Пользователи обычно используют SRAM в качестве кэш-памяти, что делает ее более быстрой формой памяти, чем DRAM.

5. ПЗУ

Постоянная память (ПЗУ) — это еще один тип основной внутренней памяти, но, в отличие от ОЗУ, ПЗУ является энергонезависимой и хранит данные постоянно. Это не зависит от устройства, которое нужно включить для сохранения данных. Вместо этого программист записывает данные в отдельные ячейки, используя двоичный код, который представляет текст с использованием двухсимвольной системы «1» и «0». Поскольку вы не можете изменить данные в ПЗУ, вы можете использовать этот тип памяти для аспектов, которые не изменяются, таких как загрузка программного обеспечения или инструкции микропрограммы, которые помогают устройству функционировать должным образом.

6. ВЫПУСКНОЙ

Программируемое постоянное запоминающее устройство (ППЗУ) – это тип ПЗУ, которое изначально представляет собой память без данных. Пользователь может записывать данные на чип с помощью специального устройства, называемого программатором PROM. Подобно ПЗУ, данные становятся постоянными после того, как пользователь записал их на чип. Этот тип памяти может быть полезен программистам, которые хотели бы создать специальную прошивку для чипа и использовать ее для изменения типичных функций системы.

7. ППЗУ

Стираемая программируемая постоянная память (СППЗУ) — это еще один тип микросхемы ПЗУ, на которую пользователи могут записывать данные, а также стирать старые данные и перепрограммировать их. Текущие данные можно стереть с помощью ультрафиолетового (УФ) света в виде окошка из кварцевого кристалла в верхней части чипа. После того, как вы стерли данные, вы можете использовать программатор PROM, чтобы перепрограммировать их. Вы можете стирать данные с микросхемы EPROM только определенное количество раз, потому что чрезмерное стирание может повредить микросхему и сделать ее ненадежной для использования в будущем.

8. ЭСППЗУ

Электрически стираемая программируемая постоянная память (ЭСППЗУ) — это последний тип энергонезависимой микросхемы ПЗУ, который обычно заменяет необходимость в микросхемах ППЗУ или СППЗУ. Этот тип памяти также позволяет пользователям стирать и перепрограммировать данные на микросхему, но делает это с помощью электрического поля и намного быстрее стирает данные, чем СППЗУ. Кроме того, вы можете удобно стирать данные, пока микросхема все еще находится внутри компьютера, в то время как микросхемы СППЗУ необходимо вынимать из компьютера, чтобы стереть их.

9. Кэш

Кэш-память — это внутренняя высокоскоростная полупроводниковая память, в которой хранятся экземпляры данных, часто используемых ЦП. Он обеспечивает доступ к ЦП, поэтому, когда ЦП запрашивает данные или программы, кэш-память может практически мгновенно передать их ЦП. Кэш-память обычно находится между процессором и оперативной памятью, которая служит буфером между ними.

10. Внешний

Внешняя память, также известная как вторичная память, – это память, не связанная напрямую с ЦП, которую можно подключать или удалять по мере необходимости. Существует много типов внешней памяти, которые люди используют в своих устройствах. Примеры включают внешние жесткие диски, флэш-накопители, карты памяти и компакт-диски (CD). Вы можете сохранять данные с компьютера на внешнюю память, удалять их с устройства и подключать к другому совместимому устройству для передачи данных.

11. Оптический привод

Память оптического привода — это внешняя память, которая может хранить и считывать данные с помощью света. Наиболее распространенными типами являются CD, DVD и Blu-ray. Чтобы получить доступ к содержимому оптического привода, вы помещаете диск в компьютер, и компьютер вращает диск. Лазерный луч внутри системы сканирует ее, получает данные на оптический привод и загружает в компьютер. Этот тип памяти может быть полезен, потому что обычно он недорог, легко доступен и хранит много данных.

12. Магнитное хранилище

Магнитные запоминающие устройства имеют покрытие из магнитного материала, в котором данные кодируются в виде электрического тока. Этот тип памяти использует магнитные поля для намагничивания небольших участков металлического вращающегося диска. Каждый раздел представляет собой «1» или «0» и содержит большой объем данных, часто много терабайт. Пользователям нравится этот тип памяти, потому что он доступен по цене, долговечен и может хранить много данных. Распространенными формами магнитных запоминающих устройств являются магнитная лента, жесткие диски и гибкие диски.

13. Твердотельные накопители

Твердотельные накопители — это форма внешней памяти, состоящая из кремниевых микросхем. Они похожи на магнитные накопители, потому что их можно удалить с устройства, на котором вы храните или извлекаете данные, но твердотельные накопители более современны.Они также быстрее, потому что память хранит двоичные данные электрически в кремниевых чипах, известных как ячейки. В оперативной памяти используется аналогичный метод, но твердотельные накопители могут сохранять память даже при выключении устройства, поскольку они используют флэш-память. Распространенными типами являются карты памяти с универсальной последовательной шиной (USB) или флэш-накопители USB.

14. Виртуальный

Виртуальная память — это еще один тип вторичной памяти в виде жесткого диска или твердотельного накопителя, который позволяет компьютеру компенсировать нехватку физической памяти путем переноса данных из ОЗУ на дисковое хранилище. Когда объем оперативной памяти заканчивается, виртуальная память перемещает данные в файл подкачки, который представляет собой часть жесткого диска, используемую в качестве расширения оперативной памяти. Это временный процесс, который исчезает, когда в ОЗУ становится больше свободного места.

Например, если пользователь находится на своем устройстве и одновременно использует несколько приложений, он может использовать большую часть доступной оперативной памяти, что может замедлить работу устройства и его способность эффективно работать с программами. Данные, которые компьютер не использует, затем переносятся в виртуальную память, чтобы освободить место в ОЗУ для запуска приложений на полную мощность.

Понятно, что многие пользователи компьютеров считают память и хранилище одним и тем же. Если вы не уверены в разнице между памятью и хранилищем в компьютерах, в этой статье рассматриваются различия между ними.

Память

Термин "память" относится к компоненту вашего компьютера, который обеспечивает кратковременный доступ к данным. Вы можете распознать этот компонент как DRAM или динамическую память с произвольным доступом. Ваш компьютер выполняет множество операций, обращаясь к данным, хранящимся в его кратковременной памяти. Некоторые примеры таких операций включают редактирование документа, загрузку приложений и работу в Интернете. Скорость и производительность вашей системы зависят от объема памяти, установленной на вашем компьютере.

Если у вас есть стол и картотечный шкаф, стол представляет собой память вашего компьютера. Предметы, которые вам нужно использовать немедленно, хранятся на вашем столе для быстрого доступа. Однако на столе не так много вещей можно хранить из-за его ограничений по размеру.

Хранилище

В то время как под памятью понимается местонахождение краткосрочных данных, хранилище — это компонент вашего компьютера, который позволяет вам хранить данные и получать доступ к ним на долгосрочной основе. Обычно хранилище представляет собой твердотельный накопитель или жесткий диск. Хранилище хранит ваши приложения, операционную систему и файлы на неопределенный срок. Компьютерам необходимо записывать информацию и считывать ее из системы хранения, поэтому скорость системы хранения определяет, насколько быстро ваша система сможет загружаться, загружать и получать доступ к тому, что вы сохранили.

В то время как стол представляет собой память компьютера, картотечный шкаф представляет собой хранилище вашего компьютера. Он содержит элементы, которые необходимо сохранить и сохранить, но которые не обязательно необходимы для немедленного доступа. Размер картоточного шкафа означает, что он может вместить большое количество вещей.

Важным различием между памятью и хранилищем является то, что память очищается при выключении компьютера. С другой стороны, хранилище остается нетронутым независимо от того, сколько раз вы выключали компьютер. Следовательно, в аналогии со столом и шкафом для документов любые файлы, которые остаются на вашем столе, когда вы уходите из офиса, будут выброшены. Все, что есть в вашей картотеке, останется.

Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

память компьютера, устройство, используемое для хранения данных или программ (последовательностей инструкций) на временной или постоянной основе для использования в электронном цифровом компьютере. Компьютеры представляют информацию в двоичном коде, записанном в виде последовательностей нулей и единиц. Каждая двоичная цифра (или «бит») может быть сохранена любой физической системой, которая может находиться в одном из двух стабильных состояний, представляющих 0 и 1. Такая система называется бистабильной. Это может быть выключатель, электрический конденсатор, который может накапливать или терять заряд, магнит с полярностью вверх или вниз или поверхность, на которой может быть ямка или нет. Сегодня конденсаторы и транзисторы, работающие как крошечные электрические переключатели, используются для временного хранения, а для долговременного хранения используются либо диски, либо ленты с магнитным покрытием, либо пластиковые диски с узором из ямок.

Память компьютера делится на основную (или первичную) память и вспомогательную (или вторичную) память. Основная память содержит инструкции и данные во время выполнения программы, а вспомогательная память содержит данные и программы, которые в данный момент не используются, и обеспечивает долгосрочное хранение.

Как Интернет перемещает информацию между компьютерами? Какая операционная система сделана Microsoft? Войдите в этот тест и проверьте свои знания о компьютерах и операционных системах.

Основная память

Самыми ранними запоминающими устройствами были электромеханические переключатели или реле (см. компьютеры: первый компьютер) и электронные лампы (см. компьютеры: первая хранимая программа). машины). В конце 1940-х годов первые компьютеры с хранимой программой использовали в качестве основной памяти ультразвуковые волны в ртутных трубках или заряды в специальных электронных лампах. Последние были первой оперативной памятью (ОЗУ). ОЗУ содержит ячейки памяти, к которым можно получить прямой доступ для операций чтения и записи, в отличие от памяти с последовательным доступом, такой как магнитная лента, в которой необходимо последовательно обращаться к каждой ячейке, пока не будет найдена требуемая ячейка.

Магнитная память барабана

Магнитные барабаны с фиксированными головками чтения/записи для каждой из множества дорожек на внешней поверхности вращающегося цилиндра, покрытого ферромагнитным материалом, использовались как для основной, так и для вспомогательной памяти в 1950-х годах, хотя доступ к данным у них был последовательным. .

Память на магнитном сердечнике

Примерно в 1952 году была разработана первая относительно дешевая оперативная память: память на магнитных сердечниках, расположение крошечных ферритовых сердечников на проволочной сетке, через которую можно было направлять ток для изменения выравнивания отдельных сердечников. Из-за неотъемлемых преимуществ оперативной памяти основная память была основной формой основной памяти, пока в конце 1960-х годов ее не вытеснила полупроводниковая память.

Полупроводниковая память

Существует два основных типа полупроводниковой памяти. Статическая RAM (SRAM) состоит из триггеров, бистабильной схемы, состоящей из четырех-шести транзисторов. Как только триггер сохраняет бит, он сохраняет это значение до тех пор, пока в нем не будет сохранено противоположное значение. SRAM обеспечивает быстрый доступ к данным, но физически она относительно велика. Он используется в основном для небольших объемов памяти, называемых регистрами, в центральном процессоре компьютера (ЦП) и для быстрой «кэш-памяти». Динамическое ОЗУ (DRAM) хранит каждый бит в электрическом конденсаторе, а не в триггере, используя транзистор в качестве переключателя для зарядки или разрядки конденсатора. Поскольку в нем меньше электрических компонентов, ячейка памяти DRAM меньше, чем SRAM. Однако доступ к его значению происходит медленнее, и, поскольку конденсаторы постепенно теряют заряд, хранящиеся значения необходимо перезаряжать примерно 50 раз в секунду. Тем не менее, DRAM обычно используется для основной памяти, потому что чип того же размера может вместить в несколько раз больше DRAM, чем SRAM.

Ячейки памяти в оперативной памяти имеют адреса. Обычно оперативную память организуют в «слова» от 8 до 64 бит или от 1 до 8 байт (8 бит = 1 байт). Размер слова обычно представляет собой количество битов, которые могут быть переданы за один раз между основной памятью и ЦП. Каждое слово и обычно каждый байт имеют адрес. Микросхема памяти должна иметь дополнительные схемы декодирования, которые выбирают набор ячеек хранения, находящихся по определенному адресу, и либо сохраняют значение по этому адресу, либо извлекают то, что там хранится. Основная память современного компьютера состоит из нескольких микросхем памяти, каждая из которых может содержать много мегабайт (миллионов байтов), а схема адресации выбирает соответствующую микросхему для каждого адреса. Кроме того, DRAM требует, чтобы схемы обнаруживали сохраненные значения и периодически обновляли их.

Для доступа к данным основной памяти требуется больше времени, чем процессору для работы с ними. Например, доступ к памяти DRAM обычно занимает от 20 до 80 наносекунд (миллиардных долей секунды), но арифметические операции ЦП могут занимать всего наносекунду или меньше. Есть несколько способов справиться с этим несоответствием. ЦП имеют небольшое количество регистров, очень быструю SRAM, в которой хранятся текущие инструкции и данные, с которыми они работают. Кэш-память — это больший объем (до нескольких мегабайт) быстрой SRAM на кристалле ЦП. Данные и инструкции из основной памяти передаются в кэш-память, а поскольку программы часто демонстрируют «локальность ссылок», то есть они некоторое время выполняют одну и ту же последовательность инструкций в повторяющемся цикле и оперируют наборами связанных данных, ссылки на память могут помещаться в быстрый кэш после того, как в него будут скопированы значения из основной памяти.

Большая часть времени доступа к DRAM уходит на декодирование адреса для выбора соответствующих ячеек памяти. Свойство локальности ссылки означает, что последовательность адресов памяти будет часто использоваться, а быстрая DRAM предназначена для ускорения доступа к последующим адресам после первого. Синхронная DRAM (SDRAM) и EDO (расширенный вывод данных) — два таких типа быстрой памяти.

Энергонезависимая полупроводниковая память, в отличие от SRAM и DRAM, не теряет своего содержимого при отключении питания. Некоторые энергонезависимые запоминающие устройства, такие как постоянное запоминающее устройство (ПЗУ), нельзя перезаписывать после изготовления или записи. Каждая ячейка памяти микросхемы ПЗУ имеет либо транзистор для 1 бита, либо ни одного для 0 бита. ПЗУ используются для программ, которые являются неотъемлемой частью работы компьютера, таких как программа начальной загрузки, которая запускает компьютер и загружает его операционную систему, или BIOS (базовая система ввода-вывода), которая обращается к внешним устройствам в персональном компьютере (ПК).

EPROM (стираемое программируемое ПЗУ), EAROM (электрически изменяемое ПЗУ) и флэш-память — это типы энергонезависимой памяти, которые можно перезаписывать, хотя перезапись занимает гораздо больше времени, чем чтение. Таким образом, они используются в качестве памяти специального назначения, когда запись требуется редко — если они используются, например, для BIOS, их можно изменить для исправления ошибок или обновления функций.

Читайте также: