Коммуникационная система компьютеров или вычислительного оборудования

Обновлено: 02.07.2024

Передача данных относится к передаче этих цифровых данных между двумя или более компьютерами, а компьютерная сеть или сеть передачи данных — это телекоммуникационная сеть, которая позволяет компьютерам обмениваться данными. Физическое соединение между сетевыми вычислительными устройствами устанавливается с использованием либо кабельной, либо беспроводной среды. Самой известной компьютерной сетью является Интернет.

Это руководство должно научить вас основам передачи данных и компьютерной сети (DCN), а также ознакомит вас с различными дополнительными понятиями, связанными с передачей данных и компьютерной сетью.

Зачем изучать передачу данных и компьютерную сеть?

Основные сведения о сети

Система взаимосвязанных компьютеров и компьютеризированных периферийных устройств, таких как принтеры, называется компьютерной сетью. Эта взаимосвязь между компьютерами облегчает обмен информацией между ними. Компьютеры могут подключаться друг к другу как по проводной, так и по беспроводной сети.

Сетевая инженерия

Сетевая инженерия — сложная задача, которая включает в себя программное обеспечение, встроенное ПО, проектирование на уровне микросхем, аппаратное обеспечение и электрические импульсы. Для упрощения проектирования сети вся концепция сети разделена на несколько уровней. Каждый слой участвует в какой-то конкретной задаче и не зависит от всех остальных слоев. Но в целом почти все сетевые задачи зависят от всех этих слоев. Слои обмениваются данными между собой, и они зависят друг от друга только в том, что касается ввода и отправки вывода.

Интернет

Сеть сетей называется объединенной сетью или просто Интернетом. Это самая большая существующая сеть на этой планете. Интернет чрезвычайно соединяет все глобальные сети и может иметь подключение к локальным сетям и домашним сетям. Интернет использует набор протоколов TCP/IP и использует IP в качестве протокола адресации. В настоящее время Интернет широко реализован с использованием IPv4. Из-за нехватки адресных пространств происходит постепенный переход с IPv4 на IPv6.

Интернет позволяет пользователям обмениваться и получать доступ к огромному количеству информации по всему миру. Он использует WWW, FTP, службы электронной почты, потоковое аудио и видео и т. д. На большом уровне Интернет работает по модели клиент-сервер.

В Интернете используется очень высокоскоростная оптоволоконная сеть. Чтобы соединить различные континенты, под водой проложены волокна, известные нам как подводный кабель связи.

Применения связи и компьютерных сетей

Компьютерные системы и периферийные устройства объединяются в сеть. Они дают множество преимуществ:

  • Общий доступ к ресурсам, таким как принтеры и устройства хранения данных.
  • Обмен информацией посредством электронной почты и FTP
  • Обмен информацией через сеть или Интернет
  • Взаимодействие с другими пользователями с помощью динамических веб-страниц
  • IP-телефоны
  • Видеоконференции
  • Параллельные вычисления
  • Обмен мгновенными сообщениями

Аудитория

Это учебное пособие было подготовлено для выпускников компьютерных специальностей, чтобы помочь им понять базовые и продвинутые концепции, связанные с передачей данных и компьютерными сетями. После прохождения этого руководства вы окажетесь на среднем уровне знаний в области передачи данных и компьютерных сетей, после чего сможете перейти на следующий уровень.

Предпосылки

Прежде чем вы приступите к изучению этого руководства, я предполагаю, что вы уже знакомы с основными понятиями компьютера, такими как клавиатура, мышь, монитор, ввод, вывод, основная и дополнительная память и т. д. Если вы не знаете хорошо знакомы с этими понятиями, тогда я предлагаю пройти наш краткий учебник по основам работы с компьютером.

Область сетей и связи включает анализ, проектирование, внедрение и использование локальных, глобальных и мобильных сетей, которые связывают компьютеры вместе. Сам по себе Интернет представляет собой сеть, которая позволяет обмениваться данными почти со всеми компьютерами в мире.

Компьютерная сеть связывает компьютеры вместе с помощью комбинации инфракрасных световых сигналов, радиоволн, телефонных линий, телевизионных кабелей и спутниковых каналов. Перед учеными-компьютерщиками стоит задача разработать протоколы (стандартизированные правила формата и обмена сообщениями), которые позволяют процессам, работающим на хост-компьютерах, интерпретировать получаемые ими сигналы и участвовать в осмысленных «беседах» для выполнения задач от имени пользователи. Сетевые протоколы также включают управление потоком, которое не позволяет отправителю данных завалить получателя сообщениями, на обработку которых нет времени или места для хранения, и контроль ошибок, который включает обнаружение ошибок передачи и автоматическую повторную отправку сообщений для исправления таких ошибок. (Некоторые технические подробности обнаружения и исправления ошибок см. в см. теорию информации.)

Стандартизация протоколов — это международная работа.Поскольку в противном случае разные виды машин и операционных систем не могли бы взаимодействовать друг с другом, ключевой задачей было сделать системные компоненты (компьютеры) «открытыми». Эта терминология исходит из стандартов связи взаимодействия открытых систем (OSI), установленных Международной организацией по стандартизации. Эталонная модель OSI определяет стандарты сетевых протоколов на семи уровнях. Каждый уровень определяется функциями, на которые он опирается из нижележащего уровня, и услугами, которые он предоставляет вышестоящему уровню.

Взаимодействие открытых систем (OSI)

Модель взаимодействия открытых систем (OSI) для сетевого взаимодействия. Модель OSI, созданная в 1983 году Международной организацией по стандартизации, делит сетевые протоколы (стандартизированные процедуры обмена информацией) на семь функциональных «уровней». Эта коммуникационная архитектура позволяет конечным пользователям, использующим разные операционные системы или работающим в разных сетях, быстро и правильно общаться.

В основе протокола лежит физический уровень, содержащий правила передачи битов по физическому каналу. Канальный уровень обрабатывает «пакеты» данных стандартного размера и повышает надежность за счет обнаружения ошибок и битов управления потоком. Сетевой и транспортный уровни разбивают сообщения на пакеты стандартного размера и направляют их адресатам. Сеансовый уровень поддерживает взаимодействие между приложениями на двух взаимодействующих компьютерах. Например, он предоставляет механизм для вставки контрольных точек (сохранение текущего состояния задачи) в длинную передачу файла, чтобы в случае сбоя повторно передавать только данные после последней контрольной точки. Уровень представления связан с функциями, которые кодируют данные, так что разнородные системы могут участвовать в осмысленном обмене данными. На самом высоком уровне находятся протоколы, поддерживающие определенные приложения. Примером такого приложения является протокол передачи файлов (FTP), который управляет передачей файлов с одного хоста на другой.

Развитие сетей и коммуникационных протоколов также привело к появлению распределенных систем, в которых компьютеры, объединенные в сеть, совместно используют данные и задачи обработки. Например, система распределенной базы данных имеет базу данных, распределенную (или реплицированную) между различными сетевыми узлами. Данные реплицируются на «зеркальных сайтах», и репликация может повысить доступность и надежность. Распределенная СУБД управляет базой данных, компоненты которой распределены по нескольким компьютерам в сети.

Сеть клиент-сервер — это распределенная система, в которой база данных находится на одном компьютере (сервере), а пользователи подключаются к этому компьютеру по сети со своих компьютеров (клиентов). Сервер предоставляет данные и отвечает на запросы от каждого клиента, в то время как каждый клиент получает доступ к данным на сервере таким образом, который не зависит и не знает о присутствии других клиентов, обращающихся к той же базе данных. Системы клиент-сервер требуют, чтобы отдельные действия нескольких клиентов по отношению к одной и той же части базы данных сервера были синхронизированы, чтобы конфликты разрешались разумным образом. Например, бронирование авиабилетов реализовано по модели клиент-сервер. Сервер содержит все данные о предстоящих рейсах, такие как текущие бронирования и распределение мест. Каждый клиент хочет получить доступ к этим данным для бронирования рейса, получения места и оплаты рейса. Во время этого процесса вполне вероятно, что два или более клиентских запроса хотят получить доступ к одному и тому же рейсу, и что остается назначить только одно место. Программное обеспечение должно синхронизировать эти два запроса, чтобы оставшееся место было назначено рациональным образом (обычно тому, кто сделал запрос первым).

Другим популярным типом распределенной системы является одноранговая сеть. В отличие от клиент-серверных сетей, одноранговая сеть предполагает, что каждый компьютер (пользователь), подключенный к ней, может выступать как в роли клиента, так и в роли сервера; таким образом, все в сети являются равноправными. Эта стратегия имеет смысл для групп, которые делятся аудиоколлекциями в Интернете, и для организации социальных сетей, таких как LinkedIn и Facebook. Каждый человек, подключенный к такой сети, получает информацию от других и делится с другими своей информацией.

Операционные системы

Операционная система – это специализированный набор программного обеспечения, который находится между аппаратной архитектурой компьютера и его приложениями. Он выполняет ряд основных действий, таких как управление файловой системой, планирование процессов, выделение памяти, сетевое взаимодействие и совместное использование ресурсов между пользователями компьютера.Операционные системы со временем усложнялись, начиная с первых компьютеров 1960-х годов.

На ранних компьютерах пользователь печатал программы на перфоленте или картах, которые считывались в компьютер, собирались или компилировались и запускались. Затем результаты передавались на принтер или магнитную ленту. Эти ранние операционные системы использовали пакетную обработку; т. е. обработка последовательностей заданий, которые компилируются и выполняются по одному без вмешательства пользователя. Каждое задание в пакете сопровождалось инструкциями для операционной системы (ОС) с подробным описанием ресурсов, необходимых для задания, таких как количество требуемого процессорного времени, необходимые файлы и устройства хранения, на которых находились файлы. Отсюда и возникла ключевая концепция операционной системы как распределителя ресурсов. Эта роль стала более важной с появлением мультипрограммирования, при котором несколько заданий одновременно выполняются на компьютере и совместно используют ресурсы, например, за счет поочередного выделения фиксированного количества процессорного времени. Более сложное аппаратное обеспечение позволяло одному заданию считывать данные, в то время как другое писало на принтер, а третье выполняло вычисления. Таким образом, операционная система управляла этими задачами таким образом, что все задания выполнялись, не мешая друг другу.

Появление разделения времени, при котором пользователи вводят команды и получают результаты непосредственно на терминале, добавило в операционную систему больше задач. Требовались процессы, известные как обработчики терминалов, наряду с такими механизмами, как прерывания (чтобы привлечь внимание операционной системы для обработки срочных задач) и буферы (для временного хранения данных во время ввода/вывода, чтобы сделать передачу более плавной). Современные большие компьютеры одновременно взаимодействуют с сотнями пользователей, создавая впечатление, что каждый из них является единственным пользователем.

Еще одной областью исследований операционных систем является проектирование виртуальной памяти. Виртуальная память — это схема, которая дает пользователям иллюзию работы с большим блоком непрерывного пространства памяти (возможно, даже больше, чем реальная память), когда на самом деле большая часть их работы приходится на вспомогательную память (диск). Блоки фиксированного размера (страницы) или блоки переменного размера (сегменты) задания считываются в основную память по мере необходимости. Такие вопросы, как объем основной памяти, выделяемый пользователям и какие страницы или сегменты должны быть возвращены на диск («выгружены»), чтобы освободить место для входящих страниц или сегментов, должны быть решены, чтобы система могла эффективно выполнять задания.< /p>

Первые коммерчески жизнеспособные операционные системы были разработаны IBM в 1960-х годах и назывались OS/360 и DOS/360. Unix был разработан в Bell Laboratories в начале 1970-х и с тех пор породил множество вариантов, включая Linux, Berkeley Unix, GNU и Apple iOS. Операционные системы, разработанные для первых персональных компьютеров в 1980-х годах, включали DOS от IBM (а позже и от Microsoft), которая превратилась в различные разновидности Windows. Важным достижением 21 века в операционных системах стало то, что они стали все более независимыми от машин.

Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:

Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.

MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.

PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.

Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

Коммутаторы. Коммутатор – это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.

Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.

Топология сети

Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:

При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.

В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует много точек входа в сеть.Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все это упомянуто выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

    — это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые службы в IBM Cloud предоставляют вам сетевые решения для увеличения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.

Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.

Беспроводной модем

Устройство связи – это аппаратное устройство, способное передавать аналоговый или цифровой сигнал по телефону, другому проводу связи или по беспроводной сети.

Классическим примером устройства связи является компьютерный модем, который преобразует цифровую информацию компьютера в аналоговый сигнал для передачи по телефонной линии. Точно так же модем принимает аналоговые сигналы и преобразует их в цифровые для обработки компьютером. Этот процесс называется модуляцией/демодуляцией, отсюда и название модема.

Другие примеры коммуникационных устройств включают сетевую карту (сетевую интерфейсную карту), устройства Wi-Fi и точки доступа.

Примеры устройств связи

Ниже приведен полный список всех различных типов коммуникационных устройств, с которыми вы можете столкнуться при работе с компьютером.

Компьютерные беспроводные адаптеры

Ошибки устройства связи

Каждый раз, когда устройство связи сталкивается с проблемами связи с другим устройством, вы можете столкнуться с ошибкой связи. Ниже приведен список общих шагов, которые можно проверить при обнаружении этой ошибки.

  • Если ваше устройство связи использует провод, убедитесь, что он надежно подключен.
  • Убедитесь, что установлены правильные драйверы, что с драйвером не возникает ошибок или конфликтов, и что устройство обнаружено.
  • Если для вашего устройства связи требуются настройки, убедитесь, что они верны. Например, для сетевой карты требуются правильные настройки IP, DNS и подсети, чтобы установить соединение с сетью и найти маршрут к другим сетевым устройствам.

Зачем компьютерам нужны устройства связи?

Компьютер может нормально работать без устройства связи. Однако для связи компьютера с другими компьютерами им необходимо устройство связи. Например, чтобы ваш компьютер мог подключиться к Интернету для просмотра этой веб-страницы, ему необходимо устройство связи. Без устройства связи вам пришлось бы использовать сеть кроссовок для передачи или обмена данными между компьютерами.

Читайте также: