Как взаимодействуют компьютерные устройства

Обновлено: 02.07.2024

Из этого введения в работу с сетями вы узнаете, как работают компьютерные сети, какая архитектура используется для проектирования сетей и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, соединенных между собой кабелями (проводными) или WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое расположение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например, в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет — крупнейший пример глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, отвечающие этим потребностям. Вот наиболее распространенные и широко используемые типы компьютерных сетей:

Локальная сеть (локальная сеть). Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

WLAN (беспроводная локальная сеть). WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

WAN (глобальная сеть). Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Обычно для управления глобальной сетью используются модели коллективного или распределенного владения.

MAN (городская сеть): MAN обычно больше, чем LAN, но меньше, чем WAN. Города и государственные учреждения обычно владеют и управляют MAN.

PAN (персональная сеть): PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили сеть PAN, которая позволяет обмениваться и синхронизировать контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

SAN (сеть хранения данных). SAN – это специализированная сеть, предоставляющая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

CAN (сеть кампуса). CAN также известен как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

VPN (виртуальная частная сеть). VPN – это безопасное двухточечное соединение между двумя конечными точками сети (см. раздел "Узлы" ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

IP-адрес: IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес идентифицирует хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства-получателя.

Узлы. Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

Маршрутизаторы. Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

Коммутаторы. Коммутатор — это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, обеспечивая доставку пакетов данных к конечному пункту назначения.В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

Коммутация каналов, которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты перемещаются по сети к конечному пункту назначения.

Переключение сообщений отправляет сообщение полностью с исходного узла, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

Порты: порт определяет конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

Типы сетевых кабелей. Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете совместно использовать принтер или систему группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городские власти могут управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит городским службам экстренной помощи реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую взаимодействовать с другими мобильными устройствами, не требуя подключения к Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Поставщики интернет-услуг (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно указывает, куда направить информацию.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети взаимодействовать и обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы – это виртуальные или физические устройства, облегчающие обмен данными между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное и программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

В сети клиент/сервер центральный сервер или группа серверов управляет ресурсами и предоставляет услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или ярусами.

Топология сети

Топология сети — это то, как устроены узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть как кабельным, так и беспроводным.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и сетка:

При топологии шинной сети каждый сетевой узел напрямую подключен к основному кабелю.

В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

В топологии звездообразной сети все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

сетчатая топология определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует множество точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) по обеспечению безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети подключаются к как можно большему количеству других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полной ячеистой топологии каждый сетевой узел соединяется со всеми остальными сетевыми узлами, обеспечивая высочайший уровень отказоустойчивости. Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • беспроводная ячеистая сеть может состоять из десятков и сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Цели балансировки нагрузки – избежать перегрузки ресурсов, оптимизировать доступные ресурсы, сократить время отклика и максимально увеличить пропускную способность.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) – это сеть с распределенными серверами, которая доставляет пользователям временно сохраненные или кэшированные копии контента веб-сайта в зависимости от их географического положения.CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. Сети CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Прямые трансляции мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все упомянутые выше — это примеры технологий, которые могут помочь компаниям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

    — это устройства, которые дают вам улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого. обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud. — это возможности безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые службы в IBM Cloud предоставляют вам сетевые решения для увеличения трафика, обеспечения удовлетворенности ваших пользователей и легкого предоставления ресурсов по мере необходимости.

Развить сетевые навыки и получить профессиональную сертификацию IBM, пройдя курсы в рамках программы Cloud Site Reliability Engineers (SRE) Professional.

Устройство связи — это аппаратное обеспечение любого типа, способное передавать данные, инструкции и информацию между передающим устройством и принимающим устройством. Одним типом устройства связи, которое соединяет канал связи с отправляющим или принимающим устройством, таким как компьютер, является модем. Компьютеры обрабатывают данные как цифровые сигналы. Данные, инструкции и информация передаются по каналу связи либо в аналоговой, либо в цифровой форме, в зависимости от канала связи. Аналоговый сигнал состоит из непрерывной электрической волны. Цифровой сигнал состоит из отдельных электрических импульсов, представляющих биты, сгруппированные в байты.

Для каналов связи, использующих цифровые сигналы (например, линии кабельного телевидения), модем передает цифровые сигналы между компьютером и каналом связи. Однако если канал связи использует аналоговые сигналы (например, некоторые телефонные линии), модем сначала преобразует аналоговые сигналы в цифровые.

На следующих страницах описываются следующие типы устройств связи: модемы с коммутируемым доступом, модемы ISDN и DSL, кабельные модемы, беспроводные модемы, сетевые карты, точки беспроводного доступа и маршрутизаторы.


Как обсуждалось ранее, цифровые сигналы компьютера должны быть преобразованы в аналоговые сигналы, прежде чем они будут переданы по стандартным телефонным линиям. Устройство связи, выполняющее это преобразование, представляет собой модем, иногда называемый модемом коммутируемого доступа. Слово модем образовано от сочетания слов модулировать для преобразования в аналоговый сигнал и демодулировать для преобразования аналогового сигнала в цифровой.

Модем обычно представляет собой плату адаптера, которую вставляют в слот расширения на материнской плате компьютера. Один конец стандартного телефонного кабеля подключается к порту на плате модема, а другой конец подключается к телефонной розетке.

ISDN- и DSL-модемы

Если вы подключаетесь к Интернету с помощью ISDN или DSL, вам потребуется устройство связи для отправки и получения цифровых сигналов ISDN или DSL. Модем ISDN отправляет цифровые данные и информацию с компьютера по линии ISDN и принимает цифровые данные и информацию по линии ISDN. Модем DSL отправляет цифровые данные и информацию с компьютера на линию DSL и принимает цифровые данные и информацию по линии DSL.Модемы ISDN и DSL обычно представляют собой внешние устройства, один конец которых подключается к телефонной линии, а другой — к порту на системном блоке.

Кабельные модемы


Сетевые карты

Сетевая карта – это плата адаптера, PC-карта, модуль ExpressCard, сетевой USB-адаптер или флэш-карта, которые позволяют компьютеру или устройству, не имеющему сетевых возможностей, получать доступ к сети. Сетевая карта координирует передачу и получение данных, инструкций и информации на компьютер или устройство, содержащее сетевую карту, и с них.

Сетевая карта соответствует рекомендациям определенного стандарта сетевых коммуникаций, например Ethernet или Token Ring. Ethernet-карта — наиболее распространенный тип сетевой карты.


Точки беспроводного доступа


Чтобы предотвратить доступ неавторизованных пользователей к файлам и компьютерам, многие маршрутизаторы защищены встроенным брандмауэром, который называется аппаратным брандмауэром. Некоторые также имеют встроенную антивирусную защиту. Современные маршрутизаторы или комбинированные точки беспроводного доступа и маршрутизаторы легко настраиваются и защищены от несанкционированного доступа.

Кабели Ethernet для локальной сети (LAN)

Сетевые технологии позволяют двум или более компьютерам соединяться друг с другом. Наиболее распространенные из этих технологий включают локальную сеть (LAN), беспроводную сеть (WAN), Интернет через клиентские серверы и Bluetooth. Каждый из этих типов компьютерных сетей служит своей цели, и вам может понадобиться использовать каждый из них.

Локальная сеть

Локальная сеть (LAN) объединяет два или более компьютеров с помощью кабелей Ethernet. Для офисных сетей это один из наиболее распространенных типов сетей из-за его надежности, стабильности и производительности. Этот тип позволяет компьютерам напрямую взаимодействовать друг с другом, если каждому компьютеру в сети предоставлен доступ к компьютеру, с которым он пытается установить соединение. Локальная сеть также может использовать внешнее подключение к Интернету и распределять его на все компьютеры в сети, что позволяет открывать внешние веб-сайты.

Беспроводная сеть

Беспроводная сеть (WAN) выполняет ту же функцию соединения компьютеров в домашней или офисной сети, что и локальная сеть, но распределяет сигнал по беспроводной сети. Беспроводное соединение позволяет совместимым настольным компьютерам, ноутбукам, смартфонам и планшетам соединяться друг с другом. Беспроводное соединение чаще всего используется в домах для подключения к Интернету. Точки доступа Wi-Fi, которые вы найдете в местных магазинах, также используют глобальную сеть для раздачи Интернета своим посетителям.

Интернет

Интернет – это наиболее часто используемая сетевая технология, которой ежедневно пользуются миллиарды пользователей по всему миру. Интернет-провайдер обслуживает платежных клиентов через клиентские серверы. Серверы провайдера отвечают за поиск запрошенного веб-сайта и отправку его по кабельным линиям обратно пользователю. Веб-сайты размещаются на клиентском сервере, который затем доставляет веб-страницы в браузер вашего компьютера.

Bluetooth

Bluetooth – относительно новая технология, которая обычно обеспечивает беспроводное подключение аксессуаров к устройству, например Bluetooth-гарнитуры, позволяющей разговаривать по мобильному телефону без помощи рук. Вы также можете создать личную сеть (PAN) с технологией Bluetooth, которая позволяет подключить до восьми компьютеров. Центральный компьютер известен как главный, а семь вспомогательных компьютеров известны как подчиненные. Подчиненный компьютер должен связаться с ведущим, чтобы получить доступ к персональной сети (PAN) или получить доступ к любому другому подчиненному компьютеру.

Джон Митчелл – эксперт во всех областях технологий, включая социальные сети и смартфоны. Он новостной ниндзя Qwiki, сообщающий последние новости интерактивной платформы. Митчелл окончил Университет Седоны со степенью магистра психологии пастырского консультирования и написал книгу "Больше никаких налогов".


Основы компьютерной сети:

Что такое компьютерная сеть? Как это работает? Что это может сделать для вас?Некоторые основные объяснения каждого компонента можно найти в этой статье.

Компьютерные сети состоят из очень простых методологий, включая следующие:

Открытая система:
система, которая подключена к сети и готова к обмену данными.

Закрытая система:
система, которая не подключена к сети и с которой невозможно установить связь.

Компьютерная сеть:
это соединение нескольких устройств, обычно называемых хостами, подключенными по нескольким путям с целью отправки/получения данных или мультимедиа.
Существует также несколько устройств или сред, которые помогают в общении между двумя разными устройствами, известными как сетевые устройства. Пример компьютерной сети: маршрутизатор, коммутатор, концентратор, мост.

Computer Networking — Network Devices

Шаблон компоновки, с помощью которого устройства соединяются друг с другом, называется топологией сети. Например, шина, звезда, сетка, кольцо, гирляндная цепочка.

Computer Networking — Network Topology

OSI:
OSI расшифровывается как Open Systems Interconnection. Это эталонная модель, определяющая стандарты протоколов связи, а также функциональные возможности каждого уровня.

Протокол:
Протокол – это набор правил или алгоритмов, определяющих способ взаимодействия двух объектов в сети, и на каждом уровне модели OSI определены разные протоколы. Некоторые из таких протоколов — это TCP, IP, UDP, ARP, DHCP, FTP и т. д.

УНИКАЛЬНЫЕ ИДЕНТИФИКАТОРЫ СЕТИ

Имя хоста:
Каждое устройство в сети связано с уникальным именем устройства, известным как Имя хоста.
Введите «имя хоста» в командной строке и нажмите «Ввод». Отобразится имя хоста вашего компьютера.

Имя хоста

IP-адрес (адрес интернет-протокола):
Также известный как логический адрес, это сетевой адрес системы в сети.
Чтобы идентифицировать каждое устройство во всемирной паутине, Управление по присвоению номеров в Интернете (IANA) назначает адрес IPV4 (версия 4) в качестве уникального идентификатора для каждого устройства в Интернете.
Длина IP-адреса составляет 32 бита. (Поэтому у нас есть 2 32 доступных IP-адреса.)
Введите «ipconfig» в командной строке и нажмите «Ввод», это даст нам IP-адрес устройства.

MAC-адрес (адрес управления доступом к среде):
Также известный как физический адрес, является уникальным идентификатором каждого хоста и связан с NIC (сетевой интерфейсной картой).
MAC-адрес назначается сетевой карте во время производства.
Длина MAC-адреса: 12 полубайтов/ 6 байт/ 48 бит.
Введите «ipconfig/all» в командной строке и нажмите «Enter», это даст нам MAC-адрес.

Порт:
Порт может называться логическим каналом, по которому данные могут быть отправлены/получены в приложение. На любом хосте может быть запущено несколько приложений, и каждое из этих приложений идентифицируется с помощью номера порта, на котором они работают.
Номер порта представляет собой 16-битное целое число, следовательно, у нас есть 2 16 доступных портов, которые распределены по категориям, как показано ниже:

Тип и диапазон портов

Количество портов: 65 536.
Диапазон: 0–65 535.
Введите «netstat -a» в командной строке и нажмите «Ввод», появится список всех используемых портов.

IP-адрес и номер порта Сокеты

Сокет:
Уникальная комбинация IP-адреса и номера порта вместе называется сокетом.

NS Lookup

ARP:
ARP означает протокол разрешения адресов.
Он используется для преобразования IP-адреса в соответствующий физический адрес (например, MAC-адрес).
ARP используется канальным уровнем для определения MAC-адреса машины получателя.
RARP:
RARP означает протокол обратного разрешения адресов.
Как следует из названия, он предоставляет IP-адрес устройства с учетом физического адреса в качестве входных данных. Но RARP устарел с тех пор, как на сцену вышел DHCP.

Для получения дополнительной информации прочитайте эту замечательную статью, предоставленную IBM – Networking A Complete Guide

Читайте также: