Как называется устройство, на котором установлены основные электронные компоненты компьютера

Обновлено: 21.11.2024

Печатные платы (PCB) – это основной строительный блок большинства современных электронных устройств. Будь то простые однослойные платы, используемые в устройстве открывания гаражных ворот, шестислойные платы в смарт-часах, 60-слойные высокоплотные и высокоскоростные печатные платы, используемые в суперкомпьютерах и серверах, печатные платы являются основой на котором собраны все остальные электронные компоненты.

Полупроводники, соединители, резисторы, диоды, конденсаторы и радиоустройства крепятся к печатной плате и «общаются» друг с другом через печатную плату.

Печатные платы обладают механическими и электрическими характеристиками, которые делают их идеальными для этих приложений. Большинство печатных плат, производимых в мире, являются жесткими, примерно 90% печатных плат, производимых сегодня, представляют собой жесткие платы. Некоторые печатные платы являются гибкими, что позволяет сгибать и сгибать схемы, а иногда они используются там, где гибкая схема выдерживает сотни тысяч циклов изгиба без каких-либо разрывов в цепях. Эти гибкие печатные платы составляют примерно 10% рынка. Небольшое подмножество этих типов схем называется жесткими гибкими схемами, в которых одна часть платы является жесткой, что идеально подходит для монтажа и соединения компонентов, а одна или несколько частей являются гибкими, обеспечивая перечисленные выше преимущества гибких схем.

Быстро развивающаяся технология печатных плат, отдельная от вышеперечисленных, называется печатной электроникой. Как правило, это очень простые и недорогие схемы, которые сокращают расходы на электронную упаковку до уровня, когда электронные решения могут быть разработаны для решения проблем, которые раньше не рассматривались. Они часто используются в электронике для носимых приложений или одноразовых электронных устройств, что открывает множество возможностей для творческих дизайнеров-электриков.

Обычные печатные платы могут состоять из одного слоя схемы или состоять из пятидесяти и более слоев. Они состоят из электрических компонентов и разъемов, соединенных токопроводящими цепями, обычно медными, с целью маршрутизации электрических сигналов и питания внутри устройств и между ними.

ПХБ были разработаны в начале 20 века, но с тех пор их технология постоянно развивалась. Прогресс и широкое внедрение технологий в области печатных плат шло параллельно с быстрым развитием технологий изготовления полупроводниковых корпусов и позволяло профессионалам отрасли инвестировать в более компактную и более эффективную электронику.

Компания Printed Circuits LLC, основанная в 1977 году, с тех пор стала новаторским производителем печатных плат. Первоначально производя все типы печатных плат, в середине 1990-х годов они стали специализироваться на производстве жестких и гибких схем. Наш широкий выбор конструкций печатных плат позволяет нам обслуживать широкий спектр отраслей по всему миру, включая военную, медицинскую, аэрокосмическую, компьютерную, телекоммуникационную и приборостроительную. Здесь мы предоставляем исчерпывающий обзор печатных плат, чтобы предоставить необходимую справочную информацию о том, чем мы занимаемся.

Для чего используются печатные платы?

По сравнению с традиционными проводными схемами печатные платы обладают рядом преимуществ. Их небольшая и легкая конструкция подходит для использования во многих современных устройствах, а их надежность и простота обслуживания подходят для интеграции в сложные системы. Кроме того, их низкая себестоимость делает их очень рентабельным вариантом.

Эти качества являются одной из причин, по которой печатные платы находят применение в различных отраслях, в том числе на следующих рынках:

Медицина

Медицинская электроника значительно выиграла от внедрения ПХБ. Электроника в компьютерах, системы обработки изображений, аппараты МРТ и радиационное оборудование продолжают развиваться в технологии благодаря электронным возможностям печатных плат.

Тоньше и меньше размер гибких и жестких гибких печатных плат позволяет производить более компактные и легкие медицинские устройства, такие как слуховые аппараты, кардиостимуляторы, имплантируемые устройства и действительно крошечные камеры для минимально инвазивных процедур. Гибко-жесткие печатные платы — особенно идеальное решение для уменьшения размера сложных медицинских устройств, поскольку они устраняют необходимость в гибких кабелях и разъемах, которые занимают ценное место в более сложных системах.

Аэрокосмическая промышленность

Жесткие, гибкие и жесткие гибкие печатные платы обычно используются в аэрокосмической промышленности для приборных панелей, приборных панелей, систем управления полетом, управления полетом и систем безопасности. Растущее число достижений в области аэрокосмических технологий увеличило потребность в более мелких и сложных печатных платах для использования в самолетах, спутниках, дронах и другой аэрокосмической электронике.Гибкие и жесткие гибкие схемы обеспечивают исключительную долговечность и живучесть благодаря отсутствию разъемов. Это делает их пригодными для использования в условиях высокой вибрации, а их небольшая и легкая конструкция снижает общий вес оборудования и, следовательно, требования к расходу топлива. Для приложений, где надежность имеет первостепенное значение, они служат высоконадежным решением.

Военные

В военном секторе ПХД используются в оборудовании, которое часто подвергается сильным ударам, ударам и вибрации, например в военных транспортных средствах, защищенных компьютерах, современном оружии и электронных системах (например, в робототехнике, системах наведения и наведения). По мере того, как военные технологии совершенствуются, чтобы удовлетворить изменяющийся спрос клиентов, все больше оборудования объединяет передовые компьютеризированные технологии, требующие как электрических, так и механических характеристик, присущих гибкой и жесткой гибкой упаковке. Эти типы электронных корпусов могут безотказно выдерживать тысячи фунтов перегрузки.

Промышленные и коммерческие

Использование печатных плат в промышленной и коммерческой электронике произвело революцию во всем, от производства до управления цепочками поставок, за счет увеличения информации, автоматизации и эффективности. В целом, они являются надежным средством управления оборудованием на все более автоматизированных объектах, повышая производительность при одновременном снижении затрат на рабочую силу. Гибкие и жесткие гибкие печатные платы позволяют производителям производить все более компактные и легкие продукты с большей функциональностью и гораздо большей надежностью, такие как дроны, камеры, мобильная электроника и защищенные компьютеры.

Печатные платы на заказ

Почти все печатные платы разрабатываются специально для своего применения. Будь то простые однослойные жесткие платы или очень сложные многослойные гибкие или жесткие гибкие схемы, печатные платы проектируются с использованием специального программного обеспечения, называемого САПР, для автоматизированного проектирования. Разработчик использует это программное обеспечение для размещения всех цепей и точек соединения, называемых переходными отверстиями, по всей плате. Программное обеспечение знает, как каждый из компонентов должен взаимодействовать друг с другом, а также какие-либо особые требования, например, как их нужно припаять к печатной плате.

Когда конструктор готов, программа экспортирует два важных компонента, с помощью которых мы будем создавать их платы. Первый называется файлами gerber, которые представляют собой файлы электронных рисунков, которые показывают каждую отдельную схему на печатной плате, где именно она находится, на каждом отдельном слое платы. Файлы gerber также будут содержать файлы сверления, показывающие нам, где именно нужно просверлить отверстия, чтобы сделать все сквозные соединения, которые мы обсуждали ранее. Они также будут содержать паяльную маску и файлы номенклатуры, которые будут рассмотрены позже, а также файл, который показывает нам, как именно вырезать периметр их платы.

Все разработчики печатных плат — жестких, гибких или жестких — используют эти файлы, чтобы сообщить производителям печатных плат, как именно они хотят построить свои платы. Они включают в себя еще один элемент, который имеет решающее значение для производителя печатных плат, — производственную печать. В распечатке производителя подробно описаны все требования к платам, которых нет в файлах gerber. Например, в распечатке для изготовления будет подробно указано, какие материалы мы должны использовать для изготовления их платы, какого размера просверленные отверстия они хотели бы, какие-либо специальные производственные инструкции или спецификации, которым мы должны соответствовать, и различная информация, такая как цвет паяльной маски или номенклатура, которую они хотели бы.< /p>

Используя эти два компонента, мы можем создать индивидуальную доску, которая точно соответствует требованиям заказчика. Поскольку печатные платы легко настраиваются, они могут быть спроектированы и изготовлены с различными гибкими возможностями, размерами и конфигурациями, подходящими практически для любого приложения.

Материалы для печатных плат

Основными материалами, используемыми при производстве печатных плат, являются подложки из стекловолокна или пластика, медь, паяльная маска и номенклатурные чернила.

(Нажмите, чтобы увеличить)

Подложки из стекловолокна и пластика

Печатные платы могут быть изготовлены из жестких или гибких базовых материалов в зависимости от предполагаемой конструкции печатной платы. В жестких печатных платах часто используется FR4 или полиимидное стекловолокно, а в гибких печатных платах и ​​жестко-гибких гибких слоях обычно используются высокотемпературные полиимидные пленки.

Обычные пластиковые подложки для гибких схем включают полиимид (PI), жидкокристаллический полимер (LCP), полиэстер (PET) и полиэтиленнафталат (PEN). Назначение подложки состоит в том, чтобы обеспечить непроводящую основу, на которой могут быть построены и изолированы друг от друга проводящие цепи. Ламинаты из полиимида и LCP обычно используются в приложениях с высокой надежностью или высокой скоростью передачи сигнала.Ламинаты из полиэстера и полиэтиленнафталата в первую очередь выбираются из-за их низкой стоимости и обычно представляют собой всего лишь один слой схем.

Медь

Из-за своей высокой электропроводности медь является наиболее часто используемым проводящим материалом для печатных плат. Все ламинаты, описанные выше, поставляются с тонкими листами медной фольги, ламинированными с одной или обеих сторон пластика. Затем производитель использует файлы gerber, предоставленные разработчиком, для изображения и травления схем в соответствии с требованиями заказчика. Толщина и количество необходимых слоев во многом зависят от области применения, для которой будет использоваться печатная плата. многослойные печатные платы состоят из чередующихся слоев медных схем и изоляционных материалов для завершения печатной платы.

Паяльная маска

Soldermask — это жидкость, обычно эпоксидный материал, которую наносят на внешние слои жестких печатных плат. Он также широко используется на жестких участках жестких гибких печатных плат. Soldermask в первую очередь предназначен для изоляции медных цепей на внешних слоях от окисления окружающей средой. Soldermask также предназначен для контроля и удержания потока припоя при сборке компонентов на печатной плате. Без паяльной маски жидкий припой может вытечь на поверхность печатной платы, соединив две соседние цепи и закоротив плату. Наиболее распространенный цвет паяльной маски — зеленый, но также существуют синий, черный, красный, янтарный, прозрачный, белый и многие другие цвета.

Номенклатура

После того, как слои паяльной маски готовы, на паяльную маску печатается идентифицирующая информация, метки и иногда штрих-коды. Эти метки называются номенклатурой, и они также будут определяться файлами, включенными в другие слои gerber. Они напечатаны на маске припоя, чтобы обеспечить точную сборку печатной платы.

Дизайн печатной платы

Платы бывают разных конструкций, поэтому важно иметь полное представление о процессе проектирования. Вот некоторые из ключевых элементов, которые следует учитывать при проектировании печатной платы:

  • Приложение, для которого будет использоваться плата
  • Среда, в которой будет работать плата
  • Объем места и конфигурация, необходимые для установки
  • Гибкость печатной платы
  • Установка и сборка

Выбор правильной конструкции печатной платы с учетом этих соображений существенно влияет на технологичность, скорость производства, выход продукта, эксплуатационные расходы и время выполнения заказов.

Для получения более подробной информации о процессе проектирования, особенно для жестких гибких систем, которые мы описываем далее на этой странице, загрузите наше бесплатное Руководство по применению и проектированию печатных плат Rigid-Flex.

Загрузите нашу бесплатную электронную книгу

Узнайте все, что вам нужно знать о проектировании, сборке и установке жестких гибких печатных плат, в нашем официальном руководстве «Применение и проектирование жестких гибких печатных плат».

Выбирая производителя печатных плат, убедитесь, что у него есть соответствующие аккредитации, чтобы убедиться, что у него есть система качества, опыт, признание в отрасли и рейтинги, которые гарантируют успех вашего проекта. В компании Printed Circuits мы стремимся соответствовать отраслевым стандартам и превосходить их. Для этого мы получили широкий спектр сертификатов и аккредитаций, в том числе:

Мы также получили квалификацию UL 94 V-0 для гибко-жестких и гибких цепей с самым большим в мире списком рейтингов UL для гибких жестких дисков. Таким образом, ваши платы могут быть сертифицированы по стандарту 94 V-0 без дополнительных испытаний (что ускоряет изготовление и доставку наших печатных плат). Дополнительную информацию о важности сертификации UL для гибко-жестких печатных плат см. в нашем техническом документе «Проблема с одобрением UL для гибко-жестких схем».

Изготовление печатных плат

Конструирование и изготовление печатных плат включает следующие этапы:

  1. Химическое изображение и травление медных слоев с дорожками для соединения электронных компонентов.
  2. Склеивание слоев вместе с помощью связующего материала, который также действует как электрическая изоляция, для создания печатной платы.
  3. Сверление и покрытие отверстий в печатной плате для электрического соединения всех слоев.
  4. Изображение и нанесение схем на внешние слои платы
  5. Покрытие обеих сторон платы паяльной маской и печать номенклатурной маркировки на печатной плате.
  6. Затем платы обрабатываются по размерам, указанным в gerber-файле периметра дизайнера.

После завершения печатная плата готова к сборке компонентов. Чаще всего компоненты прикрепляются к печатной плате путем пайки компонентов непосредственно на открытые дорожки, называемые контактными площадками, и отверстия в печатной плате.Пайку можно выполнять вручную, но чаще всего это делается на очень высокоскоростных автоматизированных сборочных машинах.

Двумя наиболее распространенными методами сборки печатных плат являются поверхностный монтаж (SMD) или технология сквозного монтажа (THT). Использование любого из них зависит от размера компонентов и конфигурации печатной платы. SMD удобен для непосредственного монтажа небольших компонентов на внешней стороне печатной платы, а THT идеально подходит для монтажа крупных компонентов через большие предварительно просверленные отверстия в плате.

Типы печатных плат

Хотя все печатные платы имеют одну и ту же основную цель, они доступны в широком диапазоне конструкций и конфигураций для удовлетворения потребностей различных приложений. Некоторые из различных типов, доступных на рынке, включают:

  • Односторонний жесткий
  • Двухсторонний жесткий
  • Многослойный жесткий
  • Однослойные гибкие схемы
  • Двусторонние гибкие схемы
  • Многослойные гибкие схемы
  • Жестко-гибкий
  • Высокая частота
  • Алюминиевая основа

1. Жесткие печатные платы

Жесткие печатные платы состоят из жестких подложек из стекловолокна, что делает их практичными и недорогими, но негибкими. Их проще и дешевле производить, чем их более гибкие аналоги, но они гораздо менее универсальны и их трудно вписать в необычную геометрию или небольшие площади.

2. Гибкие печатные платы

Гибкие печатные платы обладают относительно хорошими возможностями изгиба и складывания, что позволяет устанавливать их в ограниченном пространстве и пространстве необычной формы. Это качество делает их очень универсальными и позволяет использовать их для упаковки небольших электронных устройств. Кроме того, поскольку они легко адаптируются, продукт не обязательно должен соответствовать ограничениям печатной платы. По сравнению с жесткими печатными платами они обладают большей термостойкостью.

3. Жестко-гибкие печатные платы

Гибко-жесткие печатные платы сочетают в себе наиболее привлекательные качества как жестких, так и гибких печатных плат. В отличие от двух других типов печатных плат, эти печатные платы содержат все электронные соединения, спрятанные внутри платы, что снижает вес и общий размер платы. Это отличный выбор, когда сверхлегкая упаковка является ключевым требованием. Кроме того, они более долговечны и надежны, сохраняя при этом высокую прочность и гибкость.

Качественные печатные платы от Printed Circuits LLC

Печатные платы позволяют профессионалам из самых разных отраслей оптимизировать производительность и производство своих электронных систем. Благодаря тщательному выбору материалов и производителей печатных плат можно создать упаковку для вашего электронного устройства, оптимизированную для его конечного применения.

Компания Printed Circuits LLC является ведущим производителем гибких и жестких гибких печатных плат. Мы гордимся нашими инновационными решениями, и мы регулярно обновляем и расширяем наши предложения продуктов, чтобы удовлетворить уникальные требования наших клиентов. Благодаря нашему многолетнему опыту и приверженности качеству мы можем удовлетворить потребности каждого клиента в высококачественных решениях для печатных плат.

Материнская плата для настольного персонального компьютера Acer с типичными компонентами и интерфейсами материнской платы. Эта модель была произведена Foxconn в 2007 году и соответствует компоновке ATX (известной как «форм-фактор»), обычно используемой для настольных компьютеров. Он предназначен для работы с процессором AMD Athlon 64

Материнская плата (иногда также называемая материнской платой, системной платой, планарной платой или платой логики, или, в просторечии, мобильным устройством) — это основная печатная плата (PCB), используемая в компьютерах и других расширяемых системах. Он поддерживает и обеспечивает связь между многими важными электронными компонентами системы, такими как центральный процессор (ЦП) и память, а также предоставляет разъемы для других периферийных устройств. В отличие от объединительной платы материнская плата содержит важные подсистемы, такие как процессор и другие компоненты.

Материнская плата конкретно относится к печатной плате с возможностью расширения, и, как следует из названия, эту плату часто называют «матерью» всех подключенных к ней компонентов, которые часто включают звуковые карты, видео карты, сетевые карты, жесткие диски или другие формы постоянного хранения; Карты ТВ-тюнера, карты с дополнительными разъемами USB или FireWire и множество других пользовательских компонентов (термин материнская плата применяется к устройствам с одной платой и без дополнительных расширений или возможностей, таких как платы управления в телевизорах). , стиральные машины и другие встраиваемые системы).

Intel D945GCPE Материнская плата microATX LGA775 для процессоров Intel Pentium 4, D, XE, Dual-Core, Core 2 (около 2007 г.)

История

До изобретения микропроцессора цифровой компьютер состоял из нескольких печатных плат в корпусе для карт с компонентами, соединенными объединительной панелью, набором соединенных между собой разъемов. В очень старых конструкциях провода представляли собой дискретные соединения между контактами разъема карты, но вскоре стандартной практикой стали печатные платы. Центральный процессор (ЦП), память и периферийные устройства размещались на отдельных печатных платах, которые вставлялись в заднюю панель.

В конце 1980-х и 1990-х годах перенос все большего числа периферийных функций на материнскую плату стал экономически выгодным. В конце 1980-х годов материнские платы персональных компьютеров стали включать в себя отдельные микросхемы (также называемые микросхемами Super I/O), способные поддерживать набор низкоскоростных периферийных устройств: клавиатуру, мышь, дисковод для гибких дисков, последовательные порты и параллельные порты. К концу 1990-х годов многие материнские платы персональных компьютеров поддерживали полный спектр аудио-, видео-, накопительных и сетевых функций без каких-либо плат расширения; системы более высокого класса для 3D-игр и компьютерной графики обычно сохраняли только видеокарту в качестве отдельного компонента.

Самые популярные компьютеры, такие как Apple II и IBM PC, опубликовали схемы и другую документацию, которая позволяла быстро реконструировать и заменять материнские платы сторонних производителей. Обычно предназначенные для создания новых компьютеров, совместимых с образцами, многие материнские платы предлагали дополнительную производительность или другие функции и использовались для обновления оригинального оборудования производителя.

Дизайн

Материнская плата Octek Jaguar V 1993 года выпуска. На этой плате мало встроенной периферии, о чем свидетельствуют 6 слотов для карт ISA и отсутствие других встроенных разъемов для внешних интерфейсов

Материнская плата Samsung Galaxy SII; почти все функции устройства интегрированы в очень маленькую плату

Материнская плата обеспечивает электрические соединения, с помощью которых другие компоненты системы обмениваются данными. В отличие от объединительной платы, она также содержит центральный процессор и другие подсистемы и устройства.

Обычный настольный компьютер имеет микропроцессор, оперативную память и другие важные компоненты, подключенные к материнской плате. Другие компоненты, такие как внешнее хранилище, контроллеры для отображения видео и звука, а также периферийные устройства, могут быть подключены к материнской плате в виде съемных карт или с помощью кабелей. В современных компьютерах все чаще интегрируются некоторые из этих периферийных устройств в саму материнскую плату.

Важным компонентом материнской платы является набор микросхем, поддерживающий микропроцессор, который обеспечивает вспомогательные интерфейсы между ЦП и различными шинами и внешними компонентами. Этот чипсет в какой-то степени определяет функции и возможности материнской платы.

Современные материнские платы включают:

  • Сокеты (или слоты), в которые можно установить один или несколько микропроцессоров. В случае ЦП в корпусах с шариковой решеткой, таких как VIA C3, ЦП припаивается непосредственно к материнской плате.
  • Слоты, в которые должна быть установлена ​​основная память системы (обычно в виде модулей DIMM, содержащих чипы DRAM)
  • Набор микросхем, формирующий интерфейс между передней шиной ЦП, основной памятью и шинами периферийных устройств.
  • Микросхемы энергонезависимой памяти (обычно Flash ROM в современных материнских платах), содержащие встроенное ПО или BIOS системы.
  • Генератор часов, который вырабатывает системный тактовый сигнал для синхронизации различных компонентов.
  • Слоты для карт расширения (интерфейс к системе через поддерживаемые чипсетом шины)
  • Разъемы питания, которые получают электропитание от блока питания компьютера и передают его на ЦП, набор микросхем, основную память и платы расширения. Начиная с 2007 года некоторым видеокартам (например, GeForce 8 и Radeon R600) требуется больше энергии, чем может обеспечить материнская плата, поэтому были введены специальные разъемы для их непосредственного подключения к блоку питания.
  • Разъемы для жестких дисков, обычно только SATA. Дисководы также подключаются к источнику питания.

Кроме того, почти все материнские платы имеют логику и разъемы для поддержки часто используемых устройств ввода, таких как разъемы PS/2 для мыши и клавиатуры. Ранние персональные компьютеры, такие как Apple II или IBM PC, включали только эту минимальную поддержку периферийных устройств на материнской плате. Иногда аппаратное обеспечение видеоинтерфейса также интегрировалось в материнскую плату; например, на Apple II и редко на IBM-совместимых компьютерах, таких как IBM PC Jr. Дополнительные периферийные устройства, такие как контроллеры дисков и последовательные порты, предоставлялись в качестве плат расширения.

Учитывая высокую расчетную тепловую мощность высокоскоростных компьютерных процессоров и компонентов, современные материнские платы почти всегда включают радиаторы и точки крепления вентиляторов для рассеивания избыточного тепла.

Форм-фактор

Материнские платы производятся различных размеров и форм, называемых форм-фактором компьютера, некоторые из которых зависят от конкретных производителей компьютеров. Однако материнские платы, используемые в IBM-совместимых системах, рассчитаны на различные размеры корпусов. По состоянию на 2007 год большинство материнских плат настольных компьютеров используют стандартный форм-фактор ATX — даже те, которые используются в компьютерах Macintosh и Sun, которые не были собраны из обычных компонентов. Материнская плата корпуса и форм-фактор блока питания должны совпадать, хотя некоторые материнские платы меньшего форм-фактора того же семейства подходят для корпусов большего размера. Например, корпус ATX обычно подходит для материнской платы microATX.

В портативных компьютерах обычно используются высокоинтегрированные, миниатюрные и специализированные материнские платы. Это одна из причин, по которой портативные компьютеры сложно модернизировать и дорого ремонтировать. Часто выход из строя одного компонента ноутбука требует замены всей материнской платы, которая обычно дороже материнской платы настольного компьютера из-за большого количества интегрированных компонентов.

Сокеты процессора

Гнездо ЦП (центральный процессор) или слот — это электрический компонент, который крепится к печатной плате (PCB) и предназначен для размещения ЦП (также называемого микропроцессором). Это особый тип разъема для интегральной схемы, предназначенный для очень большого количества контактов. Сокет ЦП обеспечивает множество функций, включая физическую структуру для поддержки ЦП, поддержку радиатора, облегчение замены (а также снижение стоимости) и, что наиболее важно, формирование электрического интерфейса как с ЦП, так и с печатной платой. Разъемы ЦП на материнской плате чаще всего можно найти в большинстве настольных и серверных компьютеров (в ноутбуках обычно используются ЦП для поверхностного монтажа), особенно в тех, которые основаны на архитектуре Intel x86. Тип сокета ЦП и набор микросхем материнской платы должны поддерживать серию и скорость ЦП.

Встроенные периферийные устройства

Блок-схема современной материнской платы, которая поддерживает множество встроенных периферийных функций, а также несколько слотов расширения

Поскольку стоимость и размер интегральных схем неуклонно снижаются, теперь на материнскую плату можно включить поддержку многих периферийных устройств. Комбинируя множество функций на одной печатной плате, можно уменьшить физический размер и общую стоимость системы; Таким образом, материнские платы с высокой степенью интеграции особенно популярны в компьютерах малого форм-фактора и бюджетных компьютерах.

Слоты для периферийных карт

Обычная материнская плата будет иметь разное количество разъемов в зависимости от ее стандарта и форм-фактора.

Стандартная современная материнская плата ATX обычно имеет два или три разъема PCI-Express 16x для видеокарты, один или два устаревших слота PCI для различных карт расширения и один или два разъема PCI-E 1x (который заменил PCI) . Стандартная материнская плата EATX будет иметь от двух до четырех разъемов PCI-E 16x для видеокарт и различное количество слотов PCI и PCI-E 1x. Иногда он также может иметь слот PCI-E 4x (зависит от марки и модели).

Некоторые материнские платы имеют два или более разъема PCI-E 16x, что позволяет использовать более двух мониторов без специального оборудования или использовать специальную графическую технологию, называемую SLI (для Nvidia) и Crossfire (для AMD).Они позволяют соединить от 2 до 4 видеокарт, чтобы обеспечить лучшую производительность в интенсивных графических вычислительных задачах, таких как игры, редактирование видео и т. д.

Температура и надежность

Материнская плата ноутбука Vaio серии E

Материнские платы, как правило, имеют воздушное охлаждение с радиаторами, часто устанавливаемыми на более крупные микросхемы, такие как северный мост, в современных материнских платах. Недостаточное или неправильное охлаждение может привести к повреждению внутренних компонентов компьютера или к его сбою. Пассивного охлаждения или одного вентилятора, установленного на блоке питания, было достаточно для многих процессоров настольных компьютеров до конца 1990-х годов; с тех пор большинству из них требуются вентиляторы ЦП, установленные на радиаторах, из-за роста тактовой частоты и энергопотребления. Большинство материнских плат имеют разъемы для дополнительных корпусных вентиляторов и встроенные датчики температуры для определения температуры материнской платы и ЦП, а также управляемые разъемы вентиляторов, которые BIOS или операционная система могут использовать для регулирования скорости вращения вентиляторов. В качестве альтернативы компьютеры могут использовать систему водяного охлаждения вместо множества вентиляторов.

Некоторые компьютеры малого форм-фактора и ПК для домашних кинотеатров, предназначенные для бесшумной и энергоэффективной работы, имеют конструкцию без вентиляторов. Обычно это требует использования процессора с низким энергопотреблением, а также тщательной компоновки материнской платы и других компонентов с учетом размещения радиатора.

Исследование, проведенное в 2003 году, показало, что некоторые ложные сбои компьютеров и общие проблемы с надежностью (от искажения изображения на экране до ошибок чтения/записи ввода-вывода) могут быть связаны не с программным обеспечением или периферийным оборудованием, а со старением конденсаторов на материнских платах ПК. В конечном итоге выяснилось, что это результат неправильного состава электролита, проблема, получившая название конденсаторной чумы.

В материнских платах используются электролитические конденсаторы для фильтрации питания постоянного тока, распределяемого по плате. Эти конденсаторы стареют со скоростью, зависящей от температуры, поскольку их электролиты на водной основе медленно испаряются. Это может привести к потере емкости и последующим неисправностям материнской платы из-за нестабильности напряжения. Хотя большинство конденсаторов рассчитаны на 2000 часов работы при температуре 105 ° C (221 ° F), их ожидаемый расчетный срок службы примерно удваивается на каждые 10 ° C (50 ° F) ниже этого значения. При температуре 45 °C (113 °F) можно ожидать, что срок службы составит 15 лет. Это кажется разумным для материнской платы компьютера. Однако многие производители поставляют некачественные конденсаторы, которые значительно сокращают срок службы. Неадекватное охлаждение корпуса и повышенные температуры легко усугубляют эту проблему. Найти и заменить вышедшие из строя конденсаторы на материнских платах персональных компьютеров можно, но это требует много времени.

Загрязнение воздуха и надежность

Высокое количество отказов материнских плат в Китае и Индии, по-видимому, связано с «сернистым загрязнением воздуха, вызванным углем, сжигаемым для производства электроэнергии. По словам исследователей Intel, загрязнение воздуха разъедает электронные схемы.

Загрузка с использованием базовой системы ввода-вывода

Материнские платы содержат некоторое количество энергонезависимой памяти для инициализации системы и загрузки некоторого программного обеспечения для запуска, обычно операционной системы, с какого-либо внешнего периферийного устройства. Микрокомпьютеры, такие как Apple II и IBM PC, использовали микросхемы ПЗУ, установленные в разъемы на материнской плате. При включении питания центральный процессор загружал в свой программный счетчик адрес загрузочного ПЗУ и начинал выполнение инструкций из ПЗУ. Эти инструкции инициализировали и тестировали аппаратное обеспечение системы, отображали системную информацию на экране, выполняли проверки ОЗУ, а затем загружали исходную программу с внешнего или периферийного устройства. Если ничего не было доступно, то компьютер выполнял задачи из других хранилищ памяти или отображал сообщение об ошибке, в зависимости от модели и конструкции компьютера и версии ПЗУ. Например, как Apple II, так и исходный IBM PC имели в ПЗУ Microsoft Cassette BASIC и запускали ее, если с диска нельзя было загрузить никакую программу.

В большинстве современных материнских плат для загрузки операционной системы используется BIOS, хранящийся в микросхеме EEPROM, припаянной к материнской плате или установленной на ней. Программы загрузки неоперационной системы по-прежнему поддерживаются на современных машинах, происходящих от IBM PC, но в настоящее время предполагается, что программой загрузки будет сложная операционная система, такая как MS Windows NT или Linux. Когда на материнскую плату впервые подается питание, микропрограмма BIOS проверяет и настраивает память, схемы и периферийные устройства. Эта самопроверка при включении питания (POST) может включать проверку некоторых из следующих вещей:

  • Видеоадаптер
  • Карты, вставленные в разъемы, например обычные PCI.
  • Диск гибких дисков
  • Температура, напряжение и скорость вращения вентилятора для мониторинга оборудования.
  • CMOS, используемая для хранения конфигурации настройки BIOS
  • Клавиатура и мышь
  • Сетевой контроллер
  • Приводы оптических дисков: CD-ROM или DVD-ROM
  • Жесткий диск SCSI
  • Жесткий диск IDE, EIDE или SATA
  • Устройства безопасности, такие как сканер отпечатков пальцев или состояние переключателя с фиксацией для обнаружения вторжения.
  • USB-устройства, например запоминающее устройство.

На последних материнских платах BIOS может также исправлять микрокод центрального процессора, если BIOS обнаруживает, что установленный процессор является тем, для которого были опубликованы ошибки.

Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

интегральная схема (ИС), также называемая микроэлектронной схемой, микрочипом или микросхемой, совокупность электронных компонентов, изготовленных как единое целое, в котором миниатюризированы активные устройства (например, транзисторы и диоды) и пассивные устройства (например, конденсаторы). и резисторы), а их соединения построены на тонкой подложке из полупроводникового материала (обычно кремния). Таким образом, результирующая схема представляет собой небольшой монолитный «чип», размер которого может составлять всего несколько квадратных сантиметров или всего несколько квадратных миллиметров. Отдельные компоненты схемы обычно имеют микроскопические размеры.

Истоком интегральных схем стало изобретение транзистора в 1947 году Уильямом Б. Шокли и его командой из Bell Laboratories Американской телефонной и телеграфной компании. Команда Шокли (включая Джона Бардина и Уолтера Х. Браттейна) обнаружила, что при определенных обстоятельствах электроны образуют барьер на поверхности некоторых кристаллов, и они научились контролировать поток электричества через кристалл, манипулируя этим барьером. Управление потоком электронов через кристалл позволило команде создать устройство, которое могло бы выполнять определенные электрические операции, такие как усиление сигнала, которые ранее выполнялись электронными лампами. Они назвали это устройство транзистором от сочетания слов transfer и resistor. Изучение методов создания электронных устройств с использованием твердых материалов стало называться твердотельной электроникой. Твердотельные устройства оказались намного прочнее, с ними проще работать, они надежнее, меньше и дешевле, чем электронные лампы. Используя те же принципы и материалы, инженеры вскоре научились создавать другие электрические компоненты, такие как резисторы и конденсаторы. Теперь, когда электрические устройства можно было делать такими маленькими, самой большой частью схемы была неудобная проводка между устройствами.

Первый транзистор, изобретенный американскими физиками Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли.

Как Интернет перемещает информацию между компьютерами? Какая операционная система сделана Microsoft? Войдите в этот тест и проверьте свои знания о компьютерах и операционных системах.

Узнайте больше об ICL 2966, мейнфрейме, использующем технологию интегральных схем, который был произведен в Великобритании в 1980-х годах.

В 1958 году Джек Килби из Texas Instruments, Inc. и Роберт Нойс из Fairchild Semiconductor Corporation независимо друг от друга придумали способ дальнейшего уменьшения размера схемы. Они прокладывали очень тонкие дорожки из металла (обычно из алюминия или меди) прямо на том же куске материала, что и их устройства. Эти маленькие дорожки действовали как провода. С помощью этого метода вся схема может быть «интегрирована» в единый кусок твердого материала и таким образом создана интегральная схема (ИС). ИС могут содержать сотни тысяч отдельных транзисторов на одном куске материала размером с горошину. Работать с таким количеством электронных ламп было бы нереально неудобно и дорого. Изобретение интегральной схемы сделало возможными технологии информационного века. В настоящее время интегральные схемы широко используются во всех сферах жизни: от автомобилей до тостеров и аттракционов в парках развлечений.

Основные типы ИС

Аналоговые и цифровые схемы

Аналоговые, или линейные, схемы обычно содержат всего несколько компонентов и поэтому являются одними из самых простых типов ИС.Как правило, аналоговые схемы подключаются к устройствам, которые собирают сигналы из окружающей среды или отправляют сигналы обратно в окружающую среду. Например, микрофон преобразует изменчивые звуки голоса в электрический сигнал переменного напряжения. Затем аналоговая схема модифицирует сигнал каким-либо полезным образом, например, усиливая его или фильтруя нежелательные шумы. Затем такой сигнал можно было бы подать обратно в громкоговоритель, который воспроизвел бы тоны, первоначально улавливаемые микрофоном. Другим типичным применением аналоговой схемы является управление некоторым устройством в ответ на постоянные изменения в окружающей среде. Например, датчик температуры посылает переменный сигнал на термостат, который можно запрограммировать на включение и выключение кондиционера, обогревателя или духовки, когда сигнал достигает определенного значения.

Цифровая схема, с другой стороны, предназначена для приема только напряжений определенных заданных значений. Схема, которая использует только два состояния, известна как двоичная схема. Схема с двоичными величинами, «включено» и «выключено», представляющими 1 и 0 (т. е. истинное и ложное), использует логику булевой алгебры. (Арифметика также выполняется в двоичной системе счисления с использованием булевой алгебры.) Эти основные элементы объединяются в конструкции ИС для цифровых компьютеров и связанных с ними устройств для выполнения желаемых функций.

Компьютерное оборудование — это физическая часть компьютера, в отличие от компьютерного программного обеспечения, которое выполняется или работает на оборудовании. Аппаратное обеспечение компьютера меняется нечасто, тогда как программное обеспечение и данные изменяются часто. Термин «мягкий» относится к легко создаваемому, модифицированному или стираемому. Они отличаются от жестких физических компонентов компьютера.

Когда вы думаете о термине "компьютерное оборудование", вы, вероятно, думаете о внутренней части своего персонального компьютера дома или в классе. Однако компьютерное оборудование конкретно не относится к персональным компьютерам. Вместо этого это все типы компьютерных систем. Компьютерное оборудование используется во встроенных системах автомобилей, микроволновых печах, проигрывателях компакт-дисков, DVD-проигрывателях и многих других устройствах. В 2003 году только 0,2% всех проданных микропроцессоров предназначались для персональных компьютеров. Сколько других вещей в вашем доме или классе использует компьютерное оборудование?

Материнская плата¶

Материнская плата — это корпус или основной блок компьютера, через который взаимодействуют все остальные компоненты. Это центральная печатная плата, составляющая сложную электронную систему. Материнская плата обеспечивает электрические соединения, посредством которых взаимодействуют другие компоненты системы. Материнская плата включает в себя множество компонентов, таких как: центральный процессор (ЦП), оперативная память (ОЗУ), микропрограмма, а также внутренние и внешние шины.

Центральный процессор¶

Центральный процессор (ЦП; иногда его называют просто процессором) — это машина, которая может выполнять компьютерные программы. Иногда его называют мозгом компьютера.

Есть четыре шага, которые используют почти все ЦП в своей работе: выборка, декодирование, выполнение и обратная запись. Первый шаг, выборка, включает в себя извлечение инструкции из памяти программы. На этапе декодирования инструкция разбивается на части, которые имеют значение для других частей ЦП. На этапе выполнения различные части ЦП, такие как арифметико-логическое устройство (ALU) и устройство с плавающей запятой (FPU), подключаются, чтобы они могли выполнять желаемую операцию. Последний шаг, обратная запись, просто записывает результаты шага выполнения в некоторую форму памяти.

Оперативная память¶

Оперативная память (ОЗУ) — это оперативная память, которая очищается при выключении компьютера. Оперативная память подключается непосредственно к материнской плате и используется для хранения запущенных в данный момент программ. Оперативная память — это набор интегральных схем, которые позволяют обращаться к хранимым данным в любом порядке (почему он называется случайным). Существует множество различных типов оперативной памяти. Различия между этими различными типами включают: доступ для записи и только для чтения, статический и динамический, энергозависимый и энергонезависимый и т. д.

Прошивка¶

Прошивка загружается из постоянной памяти (ПЗУ), запускаемой из базовой системы ввода-вывода (BIOS). Это компьютерная программа, встроенная в аппаратное устройство, например микроконтроллер. Как следует из названия, прошивка находится где-то между аппаратным и программным обеспечением.Как и программное обеспечение, это компьютерная программа, которая выполняется микропроцессором или микроконтроллером. Но он также тесно связан с аппаратным обеспечением и не имеет большого значения вне его. Большинство устройств, подключенных к современным системам, представляют собой самостоятельные компьютеры специального назначения, на которых работает собственное программное обеспечение. Некоторые из этих устройств хранят это программное обеспечение («прошивку») в ПЗУ внутри самого устройства.

Источник питания¶

Блок питания, как следует из его названия, — это устройство, которое подает питание на все компоненты компьютера. В его корпусе находится трансформатор, регулятор напряжения и (обычно) охлаждающий вентилятор. Блок питания преобразует около 100-120 вольт переменного тока в низковольтный постоянный ток для использования внутренними компонентами. Наиболее распространенные компьютерные блоки питания построены в соответствии с форм-фактором ATX. Это позволяет взаимозаменять различные блоки питания с различными компонентами внутри компьютера. Блоки питания ATX также предназначены для включения и выключения с помощью сигнала от материнской платы и обеспечивают поддержку современных функций, таких как режим ожидания.

Съемные носители¶

Если вы что-то вставляете в компьютер и вынимаете, скорее всего, это съемный носитель. Существует множество различных съемных носителей. Наиболее популярными, вероятно, являются приводы CD и DVD, которые в наши дни есть почти на каждом компьютере. Есть некоторые новые дисководы, такие как Blu-ray, которые могут хранить гораздо больший объем информации, чем обычные CD или DVD. Одним из видов съемных носителей, который становится менее популярным, являются дискеты.

Компакт-диски являются наиболее распространенным типом съемных носителей. Они недороги, но и имеют короткий срок службы. Есть несколько видов компакт-дисков. CD-ROM, что означает компакт-диск только для чтения, широко используются для распространения компьютерного программного обеспечения, хотя на них можно хранить данные любого типа. CD-R — это еще один вариант, на который можно записать только один раз, но который можно прочитать много раз. CD-RW (перезаписываемый) можно записывать более одного раза, а также читать более одного раза. Некоторые другие типы компакт-дисков, которые не так популярны, включают Super Audio CD (SACD), Video Compact Disc (VCD), Super Video Compact Disc (SVCD), PhotoCD, PictureCD, CD-i и Enhanced CD.

В компьютере есть два типа устройств, использующих компакт-диски: дисковод компакт-дисков и устройство записи компакт-дисков. Привод CD-ROM, используемый для чтения компакт-дисков. Привод записи компакт-дисков может читать и записывать компакт-диски. Приводы для записи компакт-дисков гораздо более популярны среди новых компьютеров, чем дисководы для компакт-дисков. Оба типа дисководов для компакт-дисков называются дисководами для оптических дисков, поскольку они используют лазерный луч или электромагнитные волны для чтения или записи данных на компакт-диск или с него.

DVD (цифровые универсальные диски) — еще один популярный формат оптических дисков. Основное применение DVD-дисков — хранение видео и данных. Большинство DVD-дисков имеют те же размеры, что и компакт-диски. Как и у компакт-дисков, существует множество различных вариаций. DVD-ROM содержит данные, которые можно только читать, но не записывать. DVD-R и DVD+R можно записать один раз, а затем использовать как DVD-ROM. Диски DVD-RAM, DVD-RW или DVD+RW содержат данные, которые можно многократно стирать и перезаписывать. Диски DVD-Video и DVD-Audio соответственно относятся к правильно отформатированному и структурированному видео- и аудиосодержимому. Устройства, использующие DVD, очень похожи на устройства, использующие компакт-диски. Существует привод DVD-ROM, а также устройство записи DVD, которые работают так же, как привод CD-ROM и устройство записи компакт-дисков. Существует также дисковод DVD-RAM, который считывает и записывает вариант DVD-RAM для DVD.

Blu-ray¶

Blu-ray – это новый формат оптических дисков. Его основные области применения — видео высокой четкости и хранение данных. Диск имеет те же размеры, что и CD или DVD. Термин «Blu-ray» происходит от синего лазера, используемого для чтения и записи на диск. Диски Blu-ray могут хранить гораздо больше данных, чем CD или DVD. Двухслойный диск Blu-ray может хранить до 50 ГБ, что почти в шесть раз превышает емкость двухслойного DVD (ВАУ!). Диски Blu-ray имеют аналогичные устройства, используемые для их чтения и записи, как и компакт-диски. Дисковод BD-ROM может читать только диски Blu-ray, а устройство записи BD может читать и записывать диски Blu-ray.

Диска¶

Диета – это тип хранилища данных, состоящий из диска с тонким гибким ("гибким") магнитным носителем данных, заключенного в квадратную или прямоугольную пластиковую оболочку. Дискеты читаются и записываются дисководом гибких дисков. Дискеты умирают и заменяются оптическими и флэш-накопителями. Многие новые компьютеры больше не поставляются с дисководами для гибких дисков, но есть много старых компьютеров с дисководами для гибких дисков. Хотя дискеты очень дешевы, объем памяти на них по сравнению с объемом памяти по цене флэш-накопителей делает использование гибких дисков неразумным.

Внутренняя память¶

Внутреннее хранилище — это аппаратное обеспечение, которое хранит данные внутри компьютера для последующего использования и остается постоянным, даже когда компьютер обесточен. Существует несколько различных типов внутренней памяти. Жесткие диски являются наиболее популярным типом внутренней памяти. Популярность твердотельных накопителей росла медленно. Контроллер дискового массива популярен, когда вам нужно больше памяти, чем может вместить один жесткий диск.

Жесткий диск¶

Жесткий диск (HDD) – это энергонезависимое запоминающее устройство, которое хранит закодированные в цифровом виде данные на быстро вращающихся пластинах с магнитными поверхностями. В наши дни почти каждый новый компьютер поставляется с жестким диском, если только он не поставляется с новым твердотельным накопителем. Типичные жесткие диски для настольных ПК хранят от 120 до 400 ГБ, вращаются со скоростью 7200 об/мин и имеют скорость передачи данных 1 Гбит/с или выше. Доступ к жестким дискам осуществляется через шину одного из нескольких типов, включая параллельную шину ATA (также называемую IDE), последовательную шину ATA (SATA), SCSI, Serial Attached SCSI и Fibre Channel.

Твердотельный накопитель¶

Твердотельный накопитель (SSD) – это устройство хранения данных, в котором для хранения постоянных данных используется твердотельная память. SSD эмулирует жесткий диск, поэтому легко заменяет его в любом приложении. SSD начали появляться в ноутбуках, потому что они могут быть меньше, чем HDD. В настоящее время твердотельные накопители дороже на единицу емкости, чем жесткие диски, поэтому они не так быстро завоевали популярность.

Контроллер дискового массива¶

Контроллер дискового массива — это устройство, которое управляет физическими дисками и представляет их компьютеру как логические единицы. Он почти всегда реализует аппаратный RAID. RAID (избыточный массив независимых дисков) — это технология, использующая одновременное использование двух или более жестких дисков для достижения более высокого уровня производительности, надежности и/или увеличения объема данных. Контроллер дискового массива также предоставляет дополнительный дисковый кэш.

поиск меню

Урок 5: Внутри компьютера

Внутри компьютера

Вы когда-нибудь заглядывали внутрь корпуса компьютера или видели фотографии его внутренней части? Мелкие детали могут показаться сложными, но внутренняя часть компьютерного корпуса не так уж и загадочна. Этот урок поможет вам освоить некоторые основные термины и немного больше узнать о том, что происходит внутри компьютера.

Посмотрите видео ниже, чтобы узнать, что внутри настольного компьютера.

Материнская плата

Материнская плата – это основная плата компьютера. Это тонкая пластина, которая содержит ЦП, память, разъемы для жесткого диска и оптических приводов, карты расширения для управления видео и аудио, а также соединения с портами вашего компьютера (например, с портами USB). Материнская плата прямо или косвенно подключается к любой части компьютера.

ЦП/процессор

Центральный процессор (ЦП), также называемый процессором, расположен внутри корпуса компьютера на материнской плате. Его иногда называют мозгом компьютера, и его работа заключается в выполнении команд. Всякий раз, когда вы нажимаете клавишу, щелкаете мышью или запускаете приложение, вы отправляете инструкции ЦП.

ЦП обычно представляет собой двухдюймовый керамический квадрат с кремниевым чипом, расположенным внутри. Чип обычно размером с ноготь большого пальца. ЦП вставляется в гнездо ЦП на материнской плате, которое закрыто радиатором — объектом, который поглощает тепло от ЦП.

Скорость процессора измеряется в мегагерцах (МГц) или миллионах операций в секунду; и гигагерц (ГГц), или миллиарды операций в секунду. Более быстрый процессор может выполнять инструкции быстрее. Однако фактическая скорость компьютера зависит от скорости многих различных компонентов, а не только от процессора.

RAM (оперативная память)

ОЗУ — это кратковременная память вашей системы.Всякий раз, когда ваш компьютер выполняет вычисления, он временно сохраняет данные в ОЗУ до тех пор, пока они не потребуются.

Эта кратковременная память исчезает при выключении компьютера. Если вы работаете с документом, электронной таблицей или файлом другого типа, вам необходимо сохранить его, чтобы не потерять. Когда вы сохраняете файл, данные записываются на жесткий диск, который действует как долговременное хранилище.

ОЗУ измеряется в мегабайтах (МБ) или гигабайтах (ГБ). Чем больше у вас оперативной памяти, тем больше вещей ваш компьютер может делать одновременно. Если у вас недостаточно оперативной памяти, вы можете заметить, что ваш компьютер работает медленно, когда у вас открыто несколько программ. Из-за этого многие люди добавляют на свои компьютеры дополнительную оперативную память для повышения производительности.

Жесткий диск

На жестком диске хранятся ваши программы, документы и другие файлы. Жесткий диск является долговременным хранилищем, а это означает, что данные сохраняются, даже если вы выключите компьютер или отключите его от сети.

Когда вы запускаете программу или открываете файл, компьютер копирует часть данных с жесткого диска в оперативную память. При сохранении файла данные копируются обратно на жесткий диск. Чем быстрее жесткий диск, тем быстрее ваш компьютер может запускаться и загружать программы.

Блок питания

Блок питания в компьютере преобразует мощность из настенной розетки в мощность, необходимую компьютеру. Он передает питание по кабелям на материнскую плату и другие компоненты.

Если вы решите открыть корпус компьютера и посмотреть, сначала обязательно отключите компьютер от сети. Прежде чем прикасаться к внутренней части компьютера, следует коснуться заземленного металлического предмета или металлической части корпуса компьютера, чтобы снять статическое электричество. Статическое электричество может передаваться по компьютерным цепям, что может серьезно повредить вашу машину.

Дополнительные карты

Большинство компьютеров имеют слоты расширения на материнской плате, которые позволяют добавлять различные типы карт расширения. Их иногда называют картами PCI (межсоединения периферийных компонентов). Возможно, вам никогда не понадобится добавлять карты PCI, поскольку большинство материнских плат имеют встроенные видео-, звуковые, сетевые и другие возможности.

Однако, если вы хотите повысить производительность своего компьютера или обновить возможности старого компьютера, вы всегда можете добавить одну или несколько карт. Ниже приведены некоторые из наиболее распространенных типов карт расширения.

Видеокарта

Видеокарта отвечает за то, что вы видите на мониторе. Большинство компьютеров имеют GPU (графический процессор), встроенный в материнскую плату, вместо отдельной видеокарты. Если вам нравятся игры с интенсивным использованием графики, вы можете установить более быструю видеокарту в один из слотов расширения, чтобы повысить производительность.

Звуковая карта

Звуковая карта, также называемая звуковой картой, отвечает за то, что вы слышите в динамиках или наушниках. Большинство материнских плат имеют встроенный звук, но вы можете установить специальную звуковую карту для более качественного звука.

Сетевая карта

Сетевая карта позволяет вашему компьютеру обмениваться данными по сети и получать доступ к Интернету. Он может подключаться либо с помощью кабеля Ethernet, либо через беспроводное соединение (часто называемое Wi-Fi). Многие материнские платы имеют встроенные сетевые подключения, а сетевую карту также можно установить в слот расширения.

Bluetooth-карта (или адаптер)

Bluetooth – это технология беспроводной связи на короткие расстояния. Он часто используется в компьютерах для связи с беспроводными клавиатурами, мышами и принтерами. Обычно он встроен в материнскую плату или включен в беспроводную сетевую карту. Для компьютеров без Bluetooth можно приобрести USB-адаптер, часто называемый ключом.

Читайте также: