Для чего изначально были созданы компьютеры выберите 1 из 4 вариантов ответа

Обновлено: 21.11.2024

По умолчанию Google Chrome блокирует автоматическое отображение всплывающих окон на вашем экране. Если всплывающее окно заблокировано, в адресной строке появится пометка «Всплывающее окно заблокировано». Вы также можете разрешить всплывающие окна.

Если всплывающие окна по-прежнему появляются после их отключения:

  • Возможно, вы ранее подписались на получение уведомлений с сайта. Вы можете заблокировать уведомления, если не хотите, чтобы какие-либо сообщения с сайта отображались на вашем экране.
  • Возможно, ваш компьютер или телефон заражен вредоносным ПО. Узнайте, как избавиться от вредоносных программ.

Измените настройки всплывающих окон и перенаправлений по умолчанию

  1. Откройте Chrome на компьютере.
  2. В правом верхнем углу нажмите "Дополнительные настройки".
  3. Нажмите "Конфиденциальность и безопасность" Настройки сайта.
  4. Нажмите "Всплывающие окна и переадресация".
  5. Выберите нужный вариант в качестве настройки по умолчанию.

Управление всплывающими окнами и переадресацией для определенного сайта

Не все всплывающие окна являются рекламой или спамом. Некоторые законные веб-сайты отображают веб-контент во всплывающих окнах.

  1. Откройте Chrome на компьютере.
  2. Перейти на страницу, на которой всплывающие окна заблокированы.
  3. В адресной строке нажмите Всплывающее окно заблокировано .
  4. Нажмите на ссылку всплывающего окна, которое хотите просмотреть.
  5. Чтобы всегда видеть всплывающие окна для сайта, выберите Всегда разрешать всплывающие окна и переадресацию с [сайта]Готово.
  1. Откройте Chrome на компьютере.
  2. В правом верхнем углу нажмите "Дополнительные настройки".
  3. Нажмите "Конфиденциальность и безопасность" Настройки сайта.
  4. Нажмите "Всплывающие окна и переадресация".
  5. В разделе "Разрешено отправлять всплывающие окна и использовать переадресацию" найдите сайт.
  6. Справа от сайта нажмите "Еще заблокировать".

Блокировать уведомления

Если вы по-прежнему получаете сообщения с сайта после отключения всплывающих окон, возможно, вы подписаны на уведомления. Чтобы отключить уведомления для сайта:

  1. Откройте Chrome на компьютере.
  2. Перейдите на сайт, с которого вы получаете уведомления.
  3. Выберите Просмотреть информацию о сайте.
  4. В раскрывающемся меню рядом с пунктом "Уведомления" выберите "Блокировать".

Вы также можете заблокировать уведомления в настройках своего сайта.

Проблемы со всплывающими окнами

По-прежнему появляются нежелательные всплывающие окна. Попробуйте запустить инструмент очистки Chrome (только для Windows). Затем ознакомьтесь с другими способами поиска и удаления вредоносных программ с компьютера.

Использование устройства Chrome на работе или в учебном заведении. Ваш сетевой администратор может настроить для вас блокировку всплывающих окон. Если это так, вы не можете изменить этот параметр самостоятельно. Узнайте, как использовать управляемое устройство Chrome.

Всплывающие окна моего сайта заблокированы

Chrome блокирует всплывающие окна, которые могут оказаться бесполезными для пользователей.

Если на принадлежащем вам сайте блокируются всплывающие окна, посетите отчет о злоупотреблениях. В отчете вы узнаете, есть ли какие-либо проблемы с вашим сайтом, которые вы можете решить

Сегодняшние персональные компьютеры кардинально отличаются от громадных машин времен Второй мировой войны, и разница заключается не только в их размерах. К 1970-м годам технологии развились до такой степени, что люди — в основном любители и любители электроники — могли покупать ПК в разобранном виде или «микрокомпьютеры» и программировать их для развлечения, но эти ранние ПК не могли выполнять многие полезные задачи, которые могут выполнять современные компьютеры. Пользователи могли выполнять математические вычисления и играть в простые игры, но большая часть привлекательности машин заключалась в их новизне. Сегодня сотни компаний продают персональные компьютеры, аксессуары, сложное программное обеспечение и игры, а ПК используются для выполнения широкого спектра функций, от базовой обработки текстов до редактирования фотографий и управления бюджетом. Дома и на работе мы используем наши ПК практически для всего. Без них практически невозможно представить современную жизнь.

Изобретение ПК: компьютерный век

Первые электронные компьютеры никоим образом не были «личными»: они были огромными и очень дорогими, и для их работы требовалась команда инженеров и других специалистов. Один из первых и самых известных из них, электронный числовой интегратор-анализатор и компьютер (ENIAC), был построен в Пенсильванском университете для выполнения баллистических расчетов для вооруженных сил США во время Второй мировой войны. ENIAC стоил 500 000 долларов, весил 30 тонн и занимал площадь около 2000 квадратных футов. Снаружи ENIAC был покрыт путаницей кабелей, сотнями мигающих лампочек и почти 6000 механических переключателей, которые его операторы использовали, чтобы указать ему, что делать. Внутри почти 18 000 вакуумных трубок передавали электрические сигналы от одной части машины к другой.

Знаете ли вы? Журнал Time назвал персональный компьютер в 1982 году "Человеком года".

Изобретение ПК: послевоенные инновации

ENIAC и другие ранние компьютеры доказали многим университетам и корпорациям, что машины стоили огромных вложений денег, пространства и рабочей силы, которых они требовали. (Например, ENIAC мог решить за 30 секунд задачу о траектории полета ракеты, на решение которой у группы людей-«компьютеров» ушло бы 12 часов.) В то же время новые технологии позволили создавать компьютеры меньшего размера и более обтекаемый. В 1948 году Bell Labs представила транзистор, электронное устройство, которое пропускало и усиливало электрический ток, но было намного меньше, чем громоздкая вакуумная лампа. Десять лет спустя ученые из компаний Texas Instruments и Fairchild Semiconductor придумали интегральную схему, изобретение, в котором все электрические части компьютера — транзисторы, конденсаторы, резисторы и диоды — были объединены в один кремниевый чип.

Однако одним из самых значительных изобретений, проложивших путь революции ПК, был микропроцессор. До изобретения микропроцессоров компьютерам требовалась отдельная интегральная схема для каждой из их функций. (Это была одна из причин, по которой машины все еще были такими большими.) Микропроцессоры были размером с ноготь большого пальца, и они могли делать то, чего не могли интегральные микросхемы: они могли запускать компьютерные программы, запоминать информацию и управлять данными сами по себе.

Компьютер с обманчивой простотой можно описать как «устройство, автоматически выполняющее рутинные вычисления». Такое определение обязано своей обманчивостью наивному и узкому взгляду на расчет как на строго математический процесс. На самом деле вычисления лежат в основе многих действий, которые обычно не считаются математическими. Ходьба по комнате, например, требует многих сложных, хотя и подсознательных вычислений. Компьютеры также доказали свою способность решать широкий спектр задач, от балансировки чековой книжки до даже — в виде систем управления для роботов — передвижения по комнате.

Поэтому, прежде чем можно было реализовать истинную мощь вычислений, необходимо было преодолеть наивный взгляд на вычисления. Изобретатели, трудившиеся над созданием компьютера, должны были понять, что вещь, которую они изобретали, была не просто машиной для обработки чисел, не просто калькулятором. Например, они должны были узнать, что нет необходимости изобретать новый компьютер для каждого нового расчета и что компьютер может быть разработан для решения множества задач, даже таких, которые еще не представлялись, когда компьютер был построен. Они также должны были научиться сообщать такому универсальному компьютеру, решающему задачи, какую задачу решать. Другими словами, им пришлось изобрести программирование.

Они должны были решить все головокружительные проблемы разработки такого устройства, реализации дизайна и фактического создания устройства. История решения этих задач есть история ЭВМ. Эта история описана в этом разделе, и даны ссылки на записи о многих упомянутых лицах и компаниях. Кроме того, см. статьи о компьютерных науках и суперкомпьютерах.

Ранняя история

Предшественники компьютеров

Счеты

Возможно, самым ранним известным счетным устройством являются счеты. Он восходит как минимум к 1100 г. до н.э. и используется до сих пор, особенно в Азии. Сейчас, как и тогда, он обычно представляет собой прямоугольную рамку с тонкими параллельными стержнями, нанизанными на бусины. Задолго до того, как для записи чисел была принята какая-либо систематическая позиционная запись, счеты присваивали каждому стержню разные единицы измерения или веса. Эта схема позволяла представлять широкий диапазон чисел всего несколькими бусинами и, вместе с изобретением нуля в Индии, возможно, вдохновила на изобретение индийско-арабской системы счисления. В любом случае с помощью счетов можно легко манипулировать для выполнения обычных арифметических операций — сложения, вычитания, умножения и деления, — которые полезны в коммерческих операциях и в бухгалтерии.

Счеты — это цифровое устройство; то есть он представляет значения дискретно. Бусинка находится либо в одном предопределенном положении, либо в другом, однозначно представляя, скажем, единицу или ноль.

Аналоговые калькуляторы: от логарифмов Непера к логарифмической линейке

Вычислительные устройства приняли другой оборот, когда Джон Нейпир, шотландский математик, опубликовал свое открытие логарифмов в 1614 году. Любой человек может подтвердить, что сложение двух десятизначных чисел намного проще, чем их умножение, а преобразование задача умножения в задачу сложения — это именно то, что позволяют логарифмы. Это упрощение возможно благодаря следующему логарифмическому свойству: логарифм произведения двух чисел равен сумме логарифмов чисел. К 1624 году были доступны таблицы с 14 значащими цифрами для логарифмов чисел от 1 до 20 000, и ученые быстро освоили новый инструмент, позволяющий экономить труд и выполнять утомительные астрономические расчеты.

Что наиболее важно для развития вычислительной техники, преобразование умножения в сложение значительно упростило возможности механизации. Вскоре появились аналоговые вычислительные устройства, основанные на логарифмах Непера, представляющих цифровые значения с аналогичными физическими длинами. В 1620 году Эдмунд Гюнтер, английский математик, придумавший термины косинус и котангенс, построил прибор для выполнения навигационных вычислений: шкалу Гюнтера, или, как ее называли мореплаватели, гантер. Около 1632 года английский священник и математик по имени Уильям Отред построил первую логарифмическую линейку, опираясь на идеи Непера. Эта первая логарифмическая линейка была круглой, но Отред также построил первую прямоугольную линейку в 1633 году. Аналоговые устройства Гюнтера и Отреда имели различные преимущества и недостатки по сравнению с цифровыми устройствами, такими как счеты. Важно то, что последствия этих дизайнерских решений проверялись в реальном мире.

Цифровые калькуляторы: от часов-счетчиков до арифмометра

В 1623 году немецкий астроном и математик Вильгельм Шикард построил первый калькулятор. Он описал это в письме своему другу, астроному Иоганну Кеплеру, а в 1624 году он снова написал, чтобы объяснить, что машина, которую он заказал для Кеплера, была, по-видимому, вместе с прототипом, уничтожена в огне. Он назвал это Счетными часами, что современные инженеры смогли воспроизвести по деталям в его письмах. Даже общее представление о часах было временно утрачено, когда Шикард и вся его семья погибли во время Тридцатилетней войны.

Репродукция счетных часов Вильгельма Шикарда. Устройство могло складывать и вычитать шестизначные числа (с звонком для семизначных переполнений) с помощью шести взаимосвязанных шестерен, каждая из которых поворачивалась на одну десятую оборота за каждый полный оборот шестерни вправо. Таким образом, 10 оборотов любой шестерни вызовут «перенос» одной цифры на следующей передаче и изменят соответствующий дисплей.

Но, возможно, Шикард не был истинным изобретателем калькулятора. Столетием ранее Леонардо да Винчи набросал планы калькулятора, которые были достаточно полными и правильными, чтобы современные инженеры могли построить на их основе калькулятор.

Первым калькулятором или арифмометром, произведенным в любом количестве и фактически использовавшимся, была Паскалина, или арифметическая машина, разработанная и построенная французским математиком и философом Блезом Паскалем между 1642 и 1644 годами. Она могла только складывать и вычитать, с числами, вводящимися, манипулируя его циферблатами. Паскаль изобрел машину для своего отца, сборщика налогов, так что это была и первая бизнес-машина (если не считать счеты). Он построил 50 из них в течение следующих 10 лет.

Арифметическая машина, или Паскалин, французский денежный (недесятичный) калькулятор, разработанный Блезом Паскалем c. 1642. Числа можно было складывать, поворачивая колеса (расположенные вдоль нижней части машины) по часовой стрелке, и вычитать, поворачивая колеса против часовой стрелки. Каждая цифра в ответе отображалась в отдельном окошке, видимом вверху фотографии.

В 1671 году немецкий математик и философ Готфрид Вильгельм фон Лейбниц сконструировал вычислительную машину, названную счетчиком шагов. (Впервые он был построен в 1673 году.) Счетчик шагов расширил идеи Паскаля и выполнял умножение путем многократного сложения и сдвига.

Репродукция картины Готфрида Вильгельма фон Лейбница «Счетчик шагов» с оригинала, хранящегося в музее Тринкса Брунсвига в Ганновере, Германия. Поворот рукоятки (слева) приводил во вращение несколько барабанов, каждый из которых вращал шестерню, соединенную с цифровым счетчиком.

Лейбниц был активным сторонником двоичной системы счисления. Двоичные числа идеально подходят для машин, поскольку для них требуется всего две цифры, которые можно легко представить включенным и выключенным состояниями переключателя. Когда компьютеры стали электронными, двоичная система стала особенно подходящей, потому что электрическая цепь либо включена, либо выключена. Это означало, что on может означать true, off — false, а поток current — напрямую представлять поток логики.

Лейбниц предвидел целесообразность использования двоичной системы в вычислительных машинах, но его машина не использовала ее.Вместо этого счетчик шагов представлял числа в десятичной форме в виде позиций на 10-позиционных циферблатах. Даже десятичное представление не было данностью: в 1668 году Сэмюэл Морланд изобрел арифмометр, предназначенный для британских денег, — явно недесятичная система.

Устройства Паскаля, Лейбница и Морланда были редкостью, но с промышленной революцией 18 века возникла широко распространенная потребность в эффективном выполнении повторяющихся операций. Если другие виды деятельности механизированы, то почему не расчет? В 1820 году Шарль Ксавье Тома де Кольмар из Франции успешно справился с этой задачей, когда построил свой арифмометр, первое коммерческое вычислительное устройство массового производства. Он мог выполнять сложение, вычитание, умножение и, при более сложном участии пользователя, деление. Основанный на технологии Лейбница, он был чрезвычайно популярен и продавался в течение 90 лет. В отличие от современного калькулятора размером с кредитную карту, арифмометр был достаточно большим, чтобы покрыть рабочий стол.

Жаккардовый станок

Калькуляторы, такие как арифмометр, оставались популярными и после 1820 года, и их потенциал для коммерческого использования был хорошо изучен. Многие другие механические устройства, построенные в 19 веке, также выполняли повторяющиеся функции более или менее автоматически, но лишь немногие из них имели какое-либо применение в вычислительной технике. Было одно важное исключение: жаккардовый ткацкий станок, изобретенный в 1804–1805 годах французским ткачом Жозефом-Мари Жаккаром.

Жаккардовый ткацкий станок был чудом промышленной революции. Текстильный ткацкий станок, его также можно назвать первым практическим устройством обработки информации. Ткацкий станок работал, вытягивая разноцветные нити в узоры с помощью набора стержней. Вставив перфорированную карту, оператор мог управлять движением стержней и тем самым изменять рисунок плетения. Кроме того, ткацкий станок был оборудован устройством для считывания карт, которое вставляло новую карту из предварительно перфорированной колоды на место каждый раз, когда бросали челнок, что позволяло автоматизировать сложные узоры ткачества.

Жаккардовый ткацкий станок, гравюра, 1874 г. В верхней части станка находится стопка перфокарт, которые будут подаваться в ткацкий станок для контроля рисунка ткачества. Этот метод автоматического выдачи машинных инструкций использовался компьютерами еще в 20 веке.

Необычным в этом устройстве было то, что оно перенесло процесс проектирования с этапа трудоемкого ткачества на этап штамповки карт. После того, как карты были перфорированы и собраны, дизайн был готов, и ткацкий станок автоматически реализовал дизайн. Таким образом, можно сказать, что жаккардовый ткацкий станок запрограммирован на различные узоры с помощью этих колод перфокарт.

Тем, кто хочет механизировать вычисления, ткацкий станок Жаккарда дал важные уроки: последовательность операций, выполняемых машиной, можно контролировать, чтобы заставить машину делать что-то совершенно другое; перфокарта могла использоваться как средство управления машиной; и, что наиболее важно, устройство можно было направить на выполнение различных задач, передав ему инструкции на своего рода языке, т. е. сделав машину программируемой.

Не будет большим преувеличением сказать, что на жаккардовом станке программирование было изобретено раньше, чем компьютер. Тесная связь между устройством и программой стала очевидной спустя 20 лет, когда Чарльз Бэббидж изобрел первый компьютер.

Несмотря на то, что были приложены все усилия для соблюдения правил стиля цитирования, могут быть некоторые расхождения. Если у вас есть какие-либо вопросы, обратитесь к соответствующему руководству по стилю или другим источникам.

Наши редакторы рассмотрят то, что вы отправили, и решат, нужно ли пересматривать статью.

персональный компьютер (ПК), цифровой компьютер, предназначенный для одновременного использования только одним человеком. Типичная сборка персонального компьютера состоит из центрального процессора (ЦП), который содержит арифметические, логические и управляющие схемы компьютера на интегральной схеме; два типа компьютерной памяти: основная память, такая как цифровая оперативная память (ОЗУ), и вспомогательная память, такая как магнитные жесткие диски и специальные оптические компакт-диски, или диски с постоянной памятью (ПЗУ) (CD-ROM и DVD -ПЗУ); и различные периферийные устройства, включая экран дисплея, клавиатуру и мышь, а также принтер. См. также компьютер: история вычислений.

От домашних компьютеров до Apple

Небольшие и достаточно недорогие компьютеры, которые люди могут покупать для использования дома, впервые стали доступны в 1970-х годах, когда крупномасштабная интеграция позволила создать достаточно мощный микропроцессор на одном полупроводниковом чипе. Небольшая фирма MITS выпустила первый персональный компьютер Altair. Этот компьютер, в котором использовался микропроцессор 8080 корпорации Intel, был разработан в 1974 году. Хотя Altair был популярен среди любителей компьютеров, его коммерческая привлекательность была ограниченной.

Кто производитель iPhone? В каком году был представлен DVD? Айпод? Отсканируйте эти вопросы и проверьте свои знания об электронике и гаджетах.

Индустрия персональных компьютеров началась в 1977 году с выпуска трех предварительно собранных серийных персональных компьютеров: Apple Computer, Inc. (теперь Apple Inc.), Apple II, Tandy Radio Shack TRS-80 и Персональный электронный транзактор (ПЭТ) Commodore Business Machines. В этих машинах использовались восьмибитные микропроцессоры (которые обрабатывают информацию группами по восемь битов или двоичных цифр за раз) и обладали довольно ограниченным объемом памяти, т. е. способностью адресовать заданное количество данных, хранящихся в памяти. Но поскольку персональные компьютеры были намного дешевле, чем мэйнфреймы (компьютеры большего размера обычно используются крупным бизнесом, промышленностью и государственными организациями), их могли покупать частные лица, малые и средние предприятия, а также начальные и средние школы.

Из этих компьютеров на рынке доминировал TRS-80. Микрокомпьютер TRS-80 поставлялся с четырьмя килобайтами памяти, микропроцессором Z80, языком программирования BASIC и кассетами для хранения данных. Чтобы сократить расходы, машина была построена без возможности ввода строчных букв. Благодаря сети магазинов Radio Shack Тэнди и рекордной цене (399 долларов США, полностью собранная и протестированная) машина оказалась достаточно успешной, чтобы через два года убедить компанию представить более мощный компьютер, TRS-80 Model II, который можно было разумно заменить. продается как компьютер для малого бизнеса.

Apple II приобрел большую популярность, когда на нем разместилась VisiCalc, первая электронная таблица (компьютеризированная бухгалтерская программа). Вскоре для персональных компьютеров были разработаны и другие типы прикладного программного обеспечения.

ПК IBM

Корпорация IBM, ведущий мировой производитель компьютеров, не выходила на новый рынок до 1981 года, когда она представила персональный компьютер IBM, или IBM PC. IBM PC был значительно быстрее, чем конкурирующие машины, имел примерно в 10 раз больше памяти и поддерживался крупной торговой организацией IBM. IBM PC был также главным компьютером для 1-2-3, чрезвычайно популярной электронной таблицы, представленной корпорацией Lotus Development в 1982 году. IBM PC стал самым популярным персональным компьютером в мире, и его микропроцессор Intel 8088, и его операционная система, адаптированная из системы MS-DOS корпорации Microsoft, стала отраслевым стандартом. Конкурирующие машины, которые использовали микропроцессоры Intel и MS-DOS, стали называть «совместимыми с IBM», если они пытались конкурировать с IBM за счет дополнительной вычислительной мощности или памяти, и «клонами IBM», если они конкурировали просто за счет низкой цены. /p>

Персональный компьютер IBM (ПК) был представлен в 1981 году. Microsoft поставила операционную систему для машины, MS-DOS (Microsoft Disk Operating System).

В 1983 году Apple представила Lisa — персональный компьютер с графическим интерфейсом пользователя (GUI) для выполнения рутинных операций. Графический пользовательский интерфейс — это формат отображения, который позволяет пользователю выбирать команды, вызывать файлы, запускать программы и выполнять другие рутинные задачи с помощью устройства, называемого мышью, для указания графических символов (значков) или списков пунктов меню на экране. Этот тип формата имел определенные преимущества перед интерфейсами, в которых пользователь вводил текстовые или символьные команды на клавиатуре для выполнения рутинных задач. Окна графического интерфейса, раскрывающиеся меню, диалоговые окна и другие механизмы управления можно было использовать в новых программах и приложениях стандартизированным образом, так что общие задачи всегда выполнялись одним и тем же образом. Графический интерфейс Lisa стал основой персонального компьютера Apple Macintosh, который был представлен в 1984 году и оказался чрезвычайно успешным. Macintosh был особенно удобен для настольных издательских систем, потому что он мог размещать текст и графику на экране дисплея так, как они будут отображаться на печатной странице.

Стиль графического интерфейса Macintosh был широко адаптирован другими производителями персональных компьютеров и программного обеспечения для ПК.В 1985 году корпорация Microsoft представила Microsoft Windows, графический пользовательский интерфейс, который дал компьютерам на базе MS-DOS многие из тех же возможностей, что и Macintosh. Windows стала доминирующей операционной средой для персональных компьютеров.

Ни энциклопедия, ни Google не могут ответить на такие простые вопросы, как этот: кто изобрел первый компьютер? Если мы начнем копать глубже, то вскоре найдем много разных ответов, и большинство из них правильные. Поиск ответа приглашает нас вернуться к истории вычислительной техники, встретиться с ее пионерами и обнаружить, что до сих пор не совсем ясно, что такое компьютер.

Чарльз Бэббидж и механический компьютер

До Бэббиджа компьютеры были людьми. Так называли людей, специализирующихся на численных вычислениях, — тех, кто проводил долгие часы, выполняя арифметические операции, повторяя процессы снова и снова и оставляя результаты своих вычислений в виде таблиц, которые были собраны в ценных книгах. Эти таблицы значительно облегчили жизнь другим специалистам, чья работа заключалась в том, чтобы использовать эти результаты для решения всевозможных задач: от артиллерийских офицеров, решивших, как наводить пушки, до сборщиков налогов, рассчитывавших налоги, до ученых, предсказывающих приливы или движение звезд на небе.

Таким образом, в конце XVII века Наполеон поручил Гаспару де Прони (22 июля 1755 – 29 июля 1839 года) революционную задачу по созданию самых точных логарифмических и тригонометрических таблиц (с числом знаков после запятой от 14 до 29). сделано, чтобы уточнить и облегчить астрономические расчеты Парижской обсерватории и иметь возможность унифицировать все измерения, сделанные французской администрацией. Для этой колоссальной задачи де Прони пришла в голову блестящая идея разделить самые сложные вычисления на более простые математические операции, которые могли бы выполняться менее квалифицированными человеческими компьютерами. Этот способ ускорить работу и избежать ошибок был одной из вещей, которые вдохновили английского эрудита Чарльза Бэббиджа (26 декабря 1791 - 18 октября 1871) сделать следующий шаг: заменить человеческие компьютеры машинами.

Многие считают Бэббиджа отцом вычислительной техники из-за этого видения, которое так и не сбылось благодаря его усилиям. Его первой попыткой была разностная машина, которую он начал строить в 1822 году, основываясь на принципе конечных разностей, для выполнения сложных математических вычислений посредством простой серии сложений и вычитаний, избегая умножения и деления. Он даже создал небольшой калькулятор, который доказал, что его метод работает, но он не смог построить дифференциальную машину, чтобы заполнить эти желанные логарифмические и тригонометрические таблицы точными данными. Леди Байрон, мать Ады Лавлейс, утверждала, что видела действующий прототип в 1833 году, хотя и ограниченный как по сложности, так и по точности, но к тому времени Бэббидж уже исчерпал финансирование, предоставленное британским правительством.

Реплика, созданная Лондонским музеем науки на основе чертежей разностной машины № 2 Чарльза Бэббиджа. Фото: Музей науки

Далеко не обескураженный этой неудачей, математик, философ, инженер и изобретатель Чарльз Бэббидж удвоил усилия. Он сосредоточил всю свою энергию на разработке аналитической машины, которая была гораздо более амбициозной, поскольку могла выполнять еще более сложные вычисления путем вычисления операций умножения и деления. И снова Бэббидж так и не прошел стадию проектирования, но именно те разработки, которые он начал в 1837 году, сделали его, возможно, не отцом вычислительной техники, но определенно пророком того, что должно было произойти.

Тысячи страниц аннотаций и набросков Бэббиджа об аналитической машине содержали компоненты и процессы, которые являются общими для любого современного компьютера: логическое устройство для выполнения арифметических вычислений (эквивалент процессора или центрального процессора), управляющая структура с инструкциями, циклы и условное ветвление (как язык программирования), а также хранение данных на перфокартах (ранняя версия памяти), идея, которую он позаимствовал из машины Жаккарда. Бэббидж даже думал записывать результаты вычислений на бумагу, используя устройство вывода, которое было предшественником современных принтеров.

Братья Томсон и аналоговые компьютеры

В 1872 году, через год после смерти Чарльза Бэббиджа, великий физик Уильям Томсон (лорд Кельвин) изобрел машину, способную выполнять сложные вычисления и предсказывать приливы и отливы в заданном месте. Он считается первым аналоговым компьютером, разделив почести с дифференциальным анализатором, созданным в 1876 году его братом Джеймсом Томсоном.Последнее устройство было более продвинутой и полной версией, позволявшей решать дифференциальные уравнения путем интегрирования с использованием колесных и дисковых механизмов.

Деталь гармонического анализатора лорда Кельвина, используемого для математического предсказания приливов и отливов. Предоставлено: Музей науки

Однако понадобилось еще несколько десятилетий, прежде чем в начале 20 века Х. Л. Хейзен и Ванневар Буш усовершенствовали идею механического аналогового компьютера в Массачусетском технологическом институте. Между 1928 и 1931 годами они построили дифференциальный анализатор, который был действительно практичным, поскольку его можно было использовать для решения различных задач, и поэтому, следуя этому критерию, его можно было считать первым компьютером.

Тьюринг и универсальная вычислительная машина

К этому моменту эти аналоговые машины уже могли заменить человеческие компьютеры в некоторых задачах и считать все быстрее и быстрее, особенно когда их механизмы начали заменяться электронными компонентами. Но у них все же был один серьезный недостаток. Они были разработаны для выполнения одного типа расчетов, и если они должны были использоваться для другого, их шестерни или цепи должны были быть заменены.

Так было до 1936 года, когда молодой английский студент Алан Тьюринг придумал компьютер, способный решать любую задачу, которую можно было бы перевести в математические термины и затем свести к цепочке логических операций с двоичными числами, в которых можно было принять только два решения: истинно или ложно. Идея заключалась в том, чтобы свести все (цифры, буквы, картинки, звуки) к цепочкам единиц и нулей и использовать рецепт (программу) для решения проблем очень простыми шагами. Цифровой компьютер родился, но пока это была только воображаемая машина.

Вакуумные трубки и разъемы от компьютера Pilot ACE, разработанного Аланом Тьюрингом. Предоставлено: Музей науки

Аналитическая машина Бэббиджа, вероятно, соответствовала бы (почти столетием раньше) условиям универсальной машины Тьюринга… если бы она когда-либо была построена. В конце Второй мировой войны, во время которой он помог расшифровать код Enigma нацистских закодированных сообщений, Тьюринг создал один из первых компьютеров, подобных современным, Автоматическую вычислительную машину, которая в помимо того, что он был цифровым, его можно было программировать; другими словами, его можно использовать для многих целей, просто изменив программу.

Цузе и цифровой компьютер

Хотя Тьюринг установил, как должен выглядеть компьютер в теории, он не был первым, кто применил это на практике. Эта честь достается инженеру, который не сразу получил признание, отчасти потому, что его работа финансировалась нацистским режимом в разгар мировой войны. 12 мая 1941 года Конрад Цузе закончил Z3 в Берлине, который был первым полностью функциональным (программируемым и автоматическим) цифровым компьютером. Как позже сделали бы пионеры Силиконовой долины, Цузе успешно построил Z3 в своей домашней мастерской, сумев сделать это без электронных компонентов, но с использованием телефонных реле. Таким образом, первый цифровой компьютер был электромеханическим, и он не был преобразован в электронную версию, потому что правительство Германии исключило его финансирование, так как он не считался «стратегически важным» в военное время.

На другой стороне войны союзные державы придавали большое значение созданию электронных компьютеров с использованием тысяч электронных ламп. Первым был ABC (Компьютер Атанасова-Берри), созданный в 1942 году в Соединенных Штатах Джоном Винсентом Атанасоффом и Клиффордом Э. Берри, который, однако, не был ни программируемым, ни «полным по Тьюрингу». Тем временем в Великобритании двое коллег Алана Тьюринга — Томми Флауэрс и Макс Ньюман, которые также работали в Блетчли-парке над расшифровкой нацистских кодов, — создали «Колосс», первый электронный, цифровой и программируемый компьютер. Но в «Колоссе», как и в ABC, отсутствовала последняя деталь: он не был «полным по Тьюрингу».

Рабочая копия Z3 Цузе, первого полностью программируемого и автоматического компьютера. Предоставлено: Немецкий музей

Первым компьютером, который был завершен по Тьюрингу и обладал четырьмя основными характеристиками наших нынешних компьютеров, был ENIAC (электронный числовой интегратор и компьютер), тайно разработанный армией США и впервые запущенный в работу в Пенсильванском университете. 10 декабря 1945 г. с целью изучения возможности создания водородной бомбы.Для выполнения других расчетов пришлось изменить его «программу», то есть вручную переставить множество кабелей и переключателей. ENIAC, разработанный Джоном Мочли и Дж. Преспером Эккертом, занимал площадь 167 м2, весил 30 тонн, потреблял 150 киловатт электроэнергии и содержал около 20 000 электронных ламп.

ENIAC вскоре превзошел другие компьютеры, которые хранили свои программы в электронной памяти. Вакуумные лампы были заменены сначала транзисторами, а затем и микрочипами, с которых началась гонка миниатюризации компьютеров. Но эта гигантская машина, построенная великим победителем Второй мировой войны, положила начало нашему цифровому веку. В наши дни его единодушно считали бы первым настоящим компьютером в истории, если бы не Конрад Цузе (1910–1995), решивший в 1961 году реконструировать свой Z3, разрушенный бомбежкой в ​​1943 году. Немецкий музей в Мюнхене, где он находится сегодня. Прошло несколько десятилетий, пока в 1998 году мексиканский ученый-компьютерщик Рауль Рохас не предпринял попытку подробно изучить Z3 и сумел доказать, что он может быть «полным по Тьюрингу», что даже его тогдашний покойный создатель не рассматривал. .

Сосредоточившись на том, чтобы все заработало, Цузе так и не узнал, что в его руках находится первая универсальная вычислительная машина. На самом деле, он никогда не заставлял свое изобретение работать таким образом… Итак, Чарльз Бэббидж, Конрад Цузе или Алан Тьюринг изобретатель компьютера? Был ли Z3, Colossus или ENIAC первым современным компьютером? Это зависит. Вопрос остается сегодня таким же открытым, как и этот: что делает машину компьютером?

Читайте также: